Асинхронный двигатель презентация к уроку на тему. Коллекторный электродвигатель презентация к уроку по технологии на тему Презентация на тему электрический двигатель

«КПД» - Сделайте вычисления. Соберите установку. Путь S. Измерьте силу тяги F. Реки и озера. Отношение полезной работы к полной работе. Твердое тело. Существование трения. КПД. Архимед. Понятие КПД. Вес бруска. Определение КПД при подъеме тела.

«Виды двигателей» - Виды паровозов. Паровая машина. Дизель. КПД дизельных двигателей. Кузьминский Павел Дмитриевич. Двигатели. Реактивный двигатель. Двигатель внутреннего сгорания. Паровая турбина. Принцип действия паровой машины. Как это было (первооткрыватели). Принцип действия электродвигателя. Папен (Papin) Дени. Энергосиловая машина, преобразующая какую-либо энергию в механическую работу.

«Использование тепловых двигателей» - Транспортные средства. Состояние зеленой природы. Проект бензинового двигателя. В автомобильном транспорте. Архимед. Внутренняя энергия пара. Тепловые двигатели. Немецкий инженер Даймлер. Количество вредных веществ. Озеленить города. Начало истории создания реактивных двигателей. Количество электромобилей.

«Тепловые двигатели и их виды» - Паровая турбины. Тепловые машины. Паровая машина. Двигатель внутреннего сгорания. Внутренняя энергия. Газовая турбина. Разнообразие видов тепловых машин. Реактивный двигатель. Дизель. Виды тепловых двигателей.

«Тепловые двигатели и окружающая среда» - Тепловые двигатели. Ньюкомен Томас. Цикл Карно. Холодильная установка. Различные части ландшафта. Кардано Джероламо. Карно Никола Леонард Сади. Папен Дени. Принцип действия инжекторного двигателя. Паровая турбина. Принцип действия карбюраторного двигателя. Эти вещества попадают в атмосферу. Двигатели внутреннего сгорания автомобилей.

«Тепловые двигатели и машины» - Преимущества электромобиля. Виды двигателей внутреннего сгорания. Виды тепловых двигателей. Ядерный двигатель. Недостатки электромобиля. Такты работы двухтактного двигателя. Дизель. Схема работы. Разнообразие видов тепловых машин. Такты работы четырехтактного двигателя. Тепловые машины. Газовая турбина.

Всего в теме 31 презентация

Электродвигатели постоянного тока

План лекции: 1. Основные понятия. 2. Пуск двигателя. 3. Двигатель параллельного возбуждения. 4. Двигатель последовательного возбуждения. 5. Двигатель смешанного возбуждения.

1. Основные понятия Коллекторные машины обладают свойством обратимости, т.е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбуждения и в обмотке якоря машины появятся токи. Взаимодействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который является не тормозящим, как это имело место в генераторе, а вращающим.

Под действием электромагнитного момента якоря машина начинает вращаться, т.е. машина будет работать в режиме двигателя, потребляя из сети электрическую энергию и преобразуя ее в механическую. В процессе работы двигателя его якорь вращается в магнитном поле. В обмотке якоря индуцируется ЭДС Еа, направление которой можно определить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока Iа, и поэтому ее называют противоэлектродвижущей силой (противо­ЭДС) якоря (рис. 1).

Рис. 1. Направление противо­ЭДС в обмотке якоря двигателя Направление вращения якоря зависит от направлений магнитного потока Ф и тока в обмотке якоря. Поэтому, изменив направление какой­либо из указанных величин, можно изменить направление вращения якоря. При переключении общих зажимов схемы у рубильника не дает изменения направления вращения якоря, так как при этом одновременно изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.

2. Пуск двигателя При непосредственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток: Ia’ = U/ = Σr. Обычно сопротивление Σr невелико, поэтому значение пускового тока достигает недопустимо больших значений, в 10 – 20 раз превышающих номинальный ток двигателя. Такой большой пусковой ток опасен для двигателя, он может вызвать в машине круговой огонь, при таком токе в двигателе развивается чрезмерно большой пусковой момент, который оказывает ударное действие на вращающиеся части двигателя и может механически их разрушить.

Рис. 2. Схема включения пускового реостата Перед пуском двигателя необходимо рычаг Р реостата поставить на холостой контакт 0 (рис. 2). Затем включают рубильник, переводя рычаг на первый промежуточный контакт 1 и цепь якоря двигателя оказывается подключенной к сети через наибольшее сопротивление реостата rп р = r1 + r2 + r3 + r4.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громоздкими. Поэтому в двигателях большой пуск мощности двигателя напряжения. Примерами тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе или пуск двигателя в схеме «генератор – двигатель». применяют путем этого безреостатный понижения являются пуск

3. Двигатель параллельного возбуждения Схема включения в сеть двигателя параллельного возбуждения показана на рис. 3, а. Характерной особенностью этого двигателя является то, что ток в обмотке возбуждения не зависит от тока нагрузки. Реостат в цепи возбуждения rрг служит для регулирования тока в обмотке возбуждения и магнитного потока главных полюсов. двигателя определяются его регулировочными характеристиками, под которыми понимают зависимость частоты вращения n, тока I, полезного момента М2, вращающегося момента М от мощности на валу двигателя Р2 при U = const и Iв = const (рис. 3, б). Эксплуатационные свойства

Рис. 3. Схема двигателя параллельного возбуждения (а) и его рабочие характеристики (б) Изменение частоты вращения двигателя при переходе от номинальной нагрузки к ХХ, выраженное в процентах, называют номинальным изменением частоты вращения:

собой прямую Если пренебречь реакцией якоря, то (так как Iв = const) можно принять Ф = const. Тогда механическая характеристика двигателя параллельного возбуждения представляет несколько наклоненную к оси абсцисс (рис. 4, а). Угол наклона механической характеристики тем больше, чем больше значение сопротивления, включенного в цепь якоря. при Механическую отсутствии дополнительного сопротивления в цепи якоря 1). Механические характеристики двигателя, полученные при введении дополнительного сопротивления в цепь якоря, называют искусственными (прямые 2 и 3). естественной характеристику двигателя линию, называют (прямая

Рис. 45.4. Механические характеристики двигателя параллельного возбуждения: а – при введении в цепь якоря добавочного сопротивления; б – при изменении основного магнитного потока; в – при изменении напряжения в цепи якоря Вид механической характеристики зависит также от значения основного магнитного потока Ф. Так, при увеличении Ф увеличивается частота вращения ХХ n0 и одновременно увеличивается Δn.

4. Двигатель последовательного возбуждения В этом двигателе обмотка возбуждения включена последовательно в цепь якоря (рис. 5, а), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = Ia = Iв. При необходимых нагрузках магнитная система машины не насыщена и зависимость магнитного потока от тока нагрузки прямо пропорциональна, т.е. Ф = kфIa. В этом случае найдем электромагнитный момент: М = смkфIaIa = см’ Ia2.

Рис. 5. Двигатель последовательного возбуждения: а – принципиальная схема; б – рабочие характеристики; в – механические характеристики, 1 – естественная характеристика; 2 – искусственная характеристика Вращающий момент двигателя при ненасыщенном системы пропорционален а частота вращения обратно состоянии магнитной квадрату пропорциональна току нагрузки. тока,

5, б На рис. представлены рабочие характеристики М = f(I) и n = f(I) двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки почти не изменится, и характеристики двигателя приобретают почти прямолинейный характер. Характеристика частоты последовательного, вращения возбуждения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой. двигателя

2) обеспечивают n характеристики возбуждения Механические двигателя = f(M) последовательного представлены на рис. 5, в. Резко падающие кривые механических характеристик (естественная 1 и искусственная двигателю последовательного возбуждения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значение, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент.

Рис. 6. Регулирование частоты вращения двигателей 2) обеспечивают последовательного возбуждения характеристики возбуждения двигателя Механические f(M) = последовательного представлены на рис. 5, в. Резко падающие кривые механических характеристик (естественная 1 и двигателю искусственная последовательного возбуждения устойчивую работу n

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо магнитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат Rрг (рис. 6, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вращения. Этот метод регулирования применяют в двигателях небольшой мощности. В случае способ значительной мощности двигателя неэкономичен из­за больших потерь энергии в Rрг. Кроме того, реостат Rрг, рассчитываемый на рабочий и ток дорогостоящим. громоздким этот двигателя, получается

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 6, б). Так при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух двигателей каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей возможно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько однотипных тяговых двигателей. на

Изменение подводимого к двигателю напряжения возможно также при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 7, а). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 8). частоту вращения rрг; Регулировать двигателя изменением магнитного потока можно тремя способами: шунтированием обмотки возбуждения обмотки реостатом якоря возбуждения; шунтированием реостатом rш. секционированием обмотки

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

КОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ Разработал учитель технологии высшей категории, Почетный работник Начального Профессионального Образования Российской Федерации МБОУ «СОШ № 7» г. Калуги Герасимов Владислав Александров

Что общего между этими электроприборами?

КОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

ИСТОРИЯ. Первый коллекторный электродвигатель был сконструирован в России русским ученым Якоби Борисом Семеновичем в 1838 году. К 70-м годам 19 века электродвигатель был уже на столько усовершенствован, что в таком виде сохранился до наших дней.

Борис Семёнович Якоби

Назначение: Преобразование электрической энергии в механическую. Механическая энергия приводит в движение рабочие части машин и механизмов.

Принцип действия: Электрический ток от источника (батареи гальванических элементов) подается в обмотку через специальные скользящие контакты – щетки. Это две упругие металлические пластины, которые соединены проводниками с полюсами источника тока и прижаты к коллектору. Когда по обмотке якоря идет электрический ток, ротор под действием магнита начинает вращаться.

Общее устройство электродвигателя 1-подшипники, 2-задняя крышка статора, 3-обмотка, 4-якорь, 5-сердечник, 6-обмотка якоря, 7-коллектор, 8-передняя крышка, 9-вал, 10-крыльчатка.

Самые маленькие двигатели данного типа. трёхполюсной ротор на подшипниках скольжения; коллекторный узел из двух щёток - медных пластин; двухполюсной статор из постоянных магнитов. Применяются, в основном, в детских игрушках (рабочее напряжение 3-9 вольт).

Мощные двигатели (десятки Ватт), как правило, имеют: многополюсный ротор на подшипниках качения; коллекторный узел из четырёх графитовых щёток; четырёхполюсный статор из постоянных магнитов. Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 или 24 Вольт): привод вентиляторов систем охлаждения и вентиляции, «дворников», насосов омывателей.

Коллекторное мотор -колесо, 24вольта 230 ватт.

Двигатели мощностью в сотни Ватт В отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Обмотки статора могут подключаться несколькими способами: последовательно с ротором (так называемое последовательное возбуждение), преимущество: большой максимальный момент, недостаток: большие обороты холостого хода, способные повредить двигатель.

параллельно с ротором (параллельное возбуждение) преимущество: большая стабильность оборотов при изменении нагрузки, недостаток: меньший максимальный момент часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение) до некоторой степени совмещает достоинства предыдущих типов, пример - автомобильные стартёры. отдельным источником питания (независимое возбуждение) характеристика аналогична параллельному подключению, однако обычно может регулироваться.

Электродвигатель постоянного тока с параллельным возбуждением

Электродвигатель постоянного тока с последовательным возбуждением

Способы изменение частоты вращения вала электродвигателя Путём изменения величины тока возбуждения статора. Чем больше сила тока в статоре, тем выше частота вращения вала электродвигателя

Преимущества электродвигателей. Отсутствие во время работы вредных выбросов Не требуют постоянного обслуживания Можно установить в любом месте Работают в условиях вакуума Не используют легковоспламеняющиеся вещества (бензин, дизельное топливо) Простота использования

Отказы в работе коллекторного электродвигателя Условия эксплуатации и сроки службы двигателей в бытовых машинах различны. Различны и причины выхода их из строя. Установлено, что 85-95% отказывают в работе из за повреждений изоляции обмоток распределяемых следующим образом: 90% межвитковых замыканий и 10% повреждений и пробоев изоляции на корпус. Затем идет износ подшипников, деформация стали ротора или статора и изгиб вала.

Технологический процесс ремонта включает следующие основные операции:

Предремонтные испытания Наружную очистку от грязи и пыли Разборку на узлы и детали Удаление обмоток Мойку узлов и деталей Дефектовку узлов и деталей Ремонт и изготовление узлов и деталей Сборку ротора Изготовление и укладку обмоток Сушильно-пропиточные работы Механическую обработку ротора в собранном виде и его балансировку Комплектовку узлов и деталей Сборку электродвигателей Испытания после ремонта Внешнюю отделку

Подведение итогов урока. Что такое электродвигатель? В каких устройствах применяются коллекторные электродвигатели? Из каких частей состоит коллекторный электродвигатель? Какой принцип лежит в основе работы коллекторного электродвигателя?


Электродвигатель постоянного тока (ДПТ) электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию. По некоторым мнениям этот двигатель можно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простейший двигатель, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), одного электромагнита с явно выраженными полюсами на якоре (двух зубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточно коллекторного узла с двумя пластинами (ламелями) и двумя щётками.


Статор (индуктор) На статоре ДПТ располагаются, в зависимости от конструкции, или постоянные магниты (микродвигатели), или электромагниты с обмотками возбуждения (катушками, наводящими магнитный поток возбуждения). В простейшем случае статор имеет два полюса, то есть один магнит с одной парой полюсов. Но чаще ДПТ имеют две пары полюсов. Бывает и более. Помимо основных полюсов на статоре (индукторе) могут устанавливаться добавочные полюса, которые предназначены для улучшения коммутации на коллекторе.


Ротор (якорь) Минимальное число зубцов ротора, при котором само запуск возможен из любого положения ротора три. Из трёх, кажущихся явно выраженными, полюсов, на самом деле один полюс всё время находится в зоне коммутации, то есть ротор имеет две пары полюсов (как и статор, так как в противном случае работа двигателя невозможна). Ротор любого ДПТ состоит из многих катушек, на часть которых подаётся питание, в зависимости от угла поворота ротора, относительно статора. Применение большого числа (несколько десятков) катушек, необходимо для уменьшения неравномерности крутящего момента, для уменьшения коммутируемого (переключаемого) тока, и для обеспечения оптимального взаимодействия между магнитными полями ротора и статора (то есть для создания максимального момента на роторе).


По способу возбуждения электрические двигатели постоянного тока делят на четыре группы: 1) С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока. 2) С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря. 3) С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой. 4) Двигатели со смешанным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения Схемы возбуждения электродвигателей постоянного тока показаны на рисунке: А) независимое, б) параллельное, в) последовательное, г) смешанное


Коллектор Коллектор (щёточно-коллекторный узел) выполняет одновременно две функции: является датчиком углового положения ротора и переключателем тока со скользящими контактами. Конструкции коллекторов имеют множество разновидностей. Выводы всех катушек объединяются в коллекторный узел. Коллекторный узел обычно представляет собой кольцо из изолированных друг от друга пластин-контактов (ламелей), расположенных по оси (вдоль оси) ротора. Существуют и другие конструкции коллекторного узла. Графитовые щётки Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах в роторе ДПТ возникают мощные переходные процессы, в результате чего искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора недопустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.


Коммутация в электродвигателях постоянного тока. В процессе работы электродвигателя постоянного тока щетки, скользя по поверхности вращающегося коллектора, последовательно переходят с одной коллекторной пластины на другую. При этом происходит переключение параллельных секций обмотки якоря и изменение тока в них. Изменение тока происходит в то время, когда виток обмотки замкнут щеткой накоротко. Этот процесс переключения и явления, связанные с ним, называются коммутацией. В момент коммутации в короткозамкнутой секции обмотки под влиянием собственного магнитного поля наводится э. д. с. самоиндукции. Результирующая э. д. с. вызывает в короткозамкнутой секции дополнительный ток, который создает неравномерное распределение плотности тока на контактной поверхности щеток. Это обстоятельство считается основной причиной искрения коллектора под щеткой. Качество коммутации оценивается по степени искрения под сбегающим краем щетки и определяется по шкале степеней искрения.


Принцип работы Принцип работы любого электродвигателя основан на поведении проводника с током в магнитном потоке. если по проводнику находящемся в магнитном потоке пропустить ток, то он будет стремиться сместиться в сторону, то есть проводник будет выталкивать из промежутка между магнитами как пробку из бутылки шампанского. Направление силы, которая выталкивает проводник строго определена и её можно определить по, так называемому, правилу левой руки. Это правило заключается в следующем: если ладонь левой руки разместить в магнитном потоке так что бы линии магнитного потока были направлены в ладонь, а пальцы по направлению прохождения тока в проводнике, то большой палец, отогнутый на 90 гр. укажет на направление смещения проводника. Величина силы с которой проводник стремиться переместиться, определяется величиной магнитного потока и величины тока проходящему по проводнику. Если проводник выполнить в виде рамки с осью вращения расположенной между магнитами, то рамка будет стремиться повернуться вокруг своей оси. Если не учитывать инерцию, то рамка повернётся на 90 гр., так как потом сила движущая рамку будет расположена в одной плоскости с рамкой и стремиться раздвинуть рамку, а не повернуть её. Но фактически рамка проскакивает по инерции это положение и если в этот момент изменить направление тока в рамке, то она повернётся ещё как минимум на 180 гр., при очередной смене направления тока в рамке, она ещё повернётся на 180 градусов и так далее.


История создания. Первый этап развития электродвигателя () тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую. В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя. Для второго этапа развития электродвигателей () характерны конструкции с вращательным движением якоря. Томас.Дэвенпорт американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину. В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. В 1838 году этот двигатель (0,5 к Вт) был испытан на Неве для приведения в движение лодки с пассажирами, т. е. получил первое практическое применение.


Майкл Фарадей. 22 сентября 1791 г. – 25 августа 1867 г. Английский физик Майкл Фарадей родился в предместье Лондона в семье кузнеца. В 1821 г. он впервые наблюдал вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создал первую модель электродвигателя. Его исследования увенчались открытием в 1831 г. явления электромагнитной индукции. Фарадей детально изучил это явление, вывел его основной закон, выяснил зависимость индукционного тока от магнитных свойств среды, исследовал явление самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; это явление лежит, например, в основе работы всех генераторов постоянного и переменного тока. Идеи Фарадея об электрическом и магнитном полях оказали большое влияние на развитие всей физики.


Томас Дэвенпорт. Томас родился 9 июля 1802 года на ферме близ города Вильямстаун в штате Вермонт. Единственным средством обучения Томаса было самообразование. Он приобретает журналы и книги, чтобы быть в курсе последних достижений инженерии. Томас изготавливает несколько собственных магнитов и проводит с ними эксперименты, в качестве источника тока используя гальваническую батарею Вольта. Создав электромотор, Дэвенпорт строит модель электровоза, двигающегося по круговой дорожке диаметром 1,2 м и питающегося от стационарного гальванического элемента. Изобретение Дэвенпорта получает известность, пресса провозглашает революцию в науке. Американский кузнец, изобретатель. В 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году получил патент на электромагнитную машину.


Б. С. Якоби. Якоби Борис Семенович немец по происхождению, (). Что же касается Бориса Семеновича Якоби, то его научные интересы были связаны главным образом с физикой и особенно с электромагнетизмом, причем ученый всегда стремился найти практическое применение своим открытиям. В 1834 году Якоби изобрел электродвигатель с вращающимся рабочим валом, работа которого была основана на притягивании разноименных магнитных полюсов и отталкивании одноименных. В 1839 году Якоби вместе с академиком Эмилием Христиановичем Ленцем () построил два усовершенствованных и более мощных электродвигателя. Один из них был установлен на большой лодке и вращал ее гребные колеса. Важное значение для России имели труды Якоби, касающиеся организации электротехнического образования. В начале 1840-х годов он составил и прочитал первые курсы прикладной электротехники, подготовил программу теоретических и практических занятий.


Классификация ДПТ классифицируют по виду магнитной системы статора: с постоянными магнитами; с электромагнитами: – с независимым включением обмоток (независимое возбуждение); – с последовательным включением обмоток (последовательное возбуждение); – с параллельным включением обмоток (параллельное возбуждение); – со смешанным включением обмоток (смешанное возбуждение): с преобладанием последовательной обмотки; с преобладанием параллельной обмотки; Вид подключения обмоток статора существенно влияет на тяговые и электрические характеристики электродвигателя.


Применение Краны различных тяжёлых производств Привод, с требованиями регулировки скорости в широком диапазоне и высоким пусковым моментом Тяговый электропривод тепловозов, электровозов, теплоходов, карьерных самосвалов и пр. Электрические стартёры автомобилей, тракторов и др. Для уменьшения номинального напряжения питания в автомобильных стартёрах применяют двигатель постоянного тока с четырьмя щётками. Благодаря этому эквивалентное комплексное сопротивление ротора уменьшается почти в четыре раза. Статор такого двигателя имеет четыре полюса (две пары полюсов). Пусковой ток в автомобильных стартёрах около 200 ампер. Режим работы кратковременный.


Достоинства: простота устройства и управления; практически линейные механическая и регулировочная характеристики двигателя; легко регулировать частоту вращения; хорошие пусковые свойства (большой пусковой момент); компактнее других двигателей (если использовать сильные постоянные магниты в статоре); так как ДПТ являются обратимыми машинами, появляется возможность использования их как в двигательном, так и в генераторном режимах.



Вывод: Электродвигатели играют огромную роль в нашей современной жизни, не будь электродвигателя не было бы света (применение в качестве генератора),не было бы дома воды так как электродвигатель используется в насосе, люди не могли бы поднимать тяжелые грузы (использование в различных подъемных кранах) и т.д.

«КПД» - Определение КПД при подъеме тела. Архимед. Вес бруска. Соберите установку. КПД. Понятие КПД. Твердое тело. Путь S. Существование трения. Измерьте силу тяги F. Отношение полезной работы к полной работе. Реки и озера. Сделайте вычисления.

«Виды двигателей» - Электрический двигатель. Реактивный двигатель. Виды ДВС. Паровая турбина. Двигатели. Паровая машина. Энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Принцип действия электродвигателя. Принцип действия паровой машины. КПД двигателя внутреннего сгорания. Кузьминский Павел Дмитриевич.

«Тепловые двигатели и окружающая среда» - Эти вещества попадают в атмосферу. Кардано Джероламо. Схема теплового двигателя. Ползунов Иван Иванович. Самолетов. Принцип действия карбюраторного двигателя. Цикл Карно. Паровая машина Дени Папена. Папен Дени. Схема рабочего процесса четырехтактного дизеля. Охрана окружающей среды. Холодильная установка.

«Использование тепловых двигателей» - Запасы внутренней энергии. В сельском хозяйстве. На водном транспорте. Количество электромобилей. Немецкий инженер Даймлер. Проследим историю развития тепловых двигателей. Проект бензинового двигателя. Воздух. Французский инженер Кюньо. Количество вредных веществ. Инженер Геро. Начало истории создания реактивных двигателей.

«Тепловые двигатели и машины» - Электромобили. Внутренняя энергия тепловых машин. Ядерный двигатель. Модель двигателя внутреннего сгорания. Недостатки электромобиля. Тепловые машины. Общий вид двигателя внутреннего сгорания. Дизель. Двухкорпусная паровая турбина. Паровая машина. Решение проблем экологии. Реактивный двигатель. Разнообразие видов тепловых машин.

«Типы тепловых двигателей» - Вред. Двигатель внутреннего сгорания. Тепловые двигатели. Паровая турбина. Краткая история развития. Типы тепловых двигателей. Уменьшение загрязнений окружающей среды. Значение тепловых двигателей. Цикл Карно. Краткая история. Ракетный двигатель.

Всего в теме 31 презентация