Новинки двигателей внутреннего сгорания. Бесшатунные двигатели нового поколения, история развития бесшатунных поршневых двигателей

В то время как все те же основные принципы, которые приводили в движение первые автомобильные двигатели, всё ещё используются и сегодня, современные моторы сильно эволюционировали, чтобы соответствовать требованиям мощности, экологичности и эффективности для выполнения потребностей современных водителей и, конечно же, законодательных рамок.

Подумайте о старых двигателях, как о волках и о современных, как о собаках. Оба вида животных имеют одно и то же наследие и схожие характеристики, но второй вид отлично выполняет свои функции в современных ситуациях, в то время как первые просто не смогли приспособиться к жизни в городе или пригороде; первые выполняют одну задачу: охотиться, чтобы выжить, вторые выполняют целый ряд задач и имеют свои подвиды для выполнения конкретных функций, как то: охота, охрана, участие в выставках и другие. Также и двигатели: от более ранних их версий требовалось всего немного - просто приводить в движение авто, чтобы то двигалось хотя бы не медленнее лошади, в то время как от современного двигателя требуется гораздо больше: быть тихим, и в то же время иметь достаточную мощь , чтобы соответствовать современным критериям, а, может быть, даже быть предметом гордости за свой автомобиль для его владельца.

Прежде чем мы поговорим о том, чем современные автомобильные двигатели отличаются от старых, необходимо понять автомобиля. В любом случае принцип один: смесь бензина и воздуха воспламеняется в камере под названием цилиндр . В цилиндре поршень, который получает давление из-за взрыва, перемещается вниз, а затем снова вверх по инерции и под действием другого поршня, который находится в прямо противоположном расположении относительно первого. Поршень прикреплён к коленчатому валу. Когда поршень перемещается вверх и вниз, это заставляет коленвал вращаться. Коленчатый вал затем выходит на коробку передач, которой и передаёт это вращение, и далее коробка передаёт ходовой части, апогей которой - колёса машины. Звучит просто, не так ли? С современными двигателями всё абсолютно также, но есть огромная куча нюансов.

Между тем, современный бензиновый двигатель ещё очень далёк от идеала эффективности - только представьте, из всей имеющейся химической энергии в бензине только около 15 её процентов преобразуется в механическую энергию, которая в конечном счёте движет автомобилем. Статистика говорит о том, что ещё более 17 процентов энергии теряется вхолостую и колоссальные 62 процента теряется в двигателе за счёт тепла и трения.

На фото слева: старый двигатель Saab; на фото справа: современный двигатель Mini Cooper

Современные двигатели имеют ряд технологий, чтобы сделать их более эффективными в работе. Например, технология непосредственного впрыска, которая смешивает топливо и воздух, прежде чем они будут перемещены в цилиндр, может улучшить эффективность работы двигателя на 12 процентов, потому что топливо сгорает более эффективно. Турбокомпрессоры и турбонаддув , которые используют сжатый воздух от выхлопной системы авто, делают эффективнее цикл сгорания. Сжатый воздух приводит к более эффективному сгоранию. Технология газораспределения и деактивации цилиндров являются такими новшествами, которые позволяют двигателю использовать только такое количество топлива, которое необходимо двигателю, аналогично повышая его эффективность.


Но одно из основных различий между современными автомобильными двигателями и "пожилыми" моторами заключается в том, что современные двигатели работают как бы в режиме "standby", в минимальном режиме, когда им не нужно разгонять машину. В старом 8-цилиндровом двигателе все восемь цилиндров работали независимо от того, находится автомобиль на холостом ходу или получает ускорение от педали акселератора так быстро, как мог бы. Кроме того, все восемь цилиндров получали такое же количество топлива в любой промежуток времени.

Сегодняшние двигатели имеют технологию, которая позволяет им работать умнее. Деактивация цилиндров - это система, которая позволяет некоторым цилиндрам в двигателе выключиться, когда они не нужны, например, когда автомобиль работает на холостом ходу или движется накатом, а педаль акселератора не нажата нисколько. Но когда необходима вся мощь мотора, то эти выключенные ранее цилиндры "просыпаются" и помогают остальным. Деактивация цилиндров помогает двигателям работать более эффективно, так как это означает, что двигатель использует только то топливо, которое необходимо, и прилагает только те усилия, которые необходимы для того, чтобы двигатель не заглох и чтобы производилось достаточно энергии для работы электроники, климат-контроля и прочих дополнительных функций машины.

Технология газораспределения, в свою очередь, помогает современным двигателям работать "умнее". Без этой системы клапаны открываются для того же количества топлива в течение одинакового количества времени и с таким же зазором в любое время, как бы ни старался работать двигатель. Это порождает большие отходы топлива. С переменной газораспределения отверстия клапанов оптимизированы для типа работы, который двигатель делает. Это помогает мотору потреблять меньше топлива и работать намного эффективнее.

Современные двигатели имеют много технологий, которые помогают использовать меньше топлива, производя больше энергии, чем старые двигатели, но у них есть ещё одна вещь, которой пренебрегли "пожилые" двигатели - это партнеры.

Сегодняшние автомобильные двигатели - это не только сложные технологические достижения, но это целая цепочка узлов и агрегатов, работающих слаженно всеми компонентами таких высокотехнологичных достижений, которые помогают им лучше выполнять свою работу. Так, раньше двух-трёх передач в коробке было вполне достаточно, сегодня четырёх- и даже пятиступенчатые КПП уже устаревают - современные двигатели оснащаются современными коробками передач с семью и даже восемью скоростями . Чем больше число передач, тем лучше двигатель работает сразу в двух направлениях: во-первых, в более широком диапазоне скоростей можно достичь более разнообразных оборотов двигателя, а, значит, ускориться медленно или быстро в зависимости от желаемых потребностей; во-вторых, экономить топливо более эффективно за счёт тех же оборотов. Но даже если восьми передач в коробке не хватает, современные двигатели могут иметь "партнерские отношения" и вовсе с бесступенчатой ​​трансмиссией (вариатором). В принцип работы вариаторов заложено бесконечное число передаточных чисел, что делает их в состоянии передать мощность двигателя на колёса наиболее эффективным способом в любом диапазоне скорости автомобиля.

В современные двигатели получают помощь от электродвигателей, работающих на аккумуляторных батареях. В то время как электродвигатель может питать автомобиль на медленных скоростях или вовсе только питать электрооборудование в машине, когда автомобиль останавливается, он также может генерировать дополнительную мощность, когда это необходимо, например, когда автомобиль ускоряется недостаточно быстро.

Но главный партнёр, что позволил значительно повысить эффективность двигателя - это, конечно же, бортовой компьютер , "мозги" автомобиля, который управляет и переключением коробки (кроме механической коробки передач), и обогащённостью и количеством впрыскиваемой в цилиндры топливо-воздушной смеси, и ещё огромным рядом функций.

Двигатели - механизмы, приводящие в движение транспорт или машину. Двигатели работают на топливе (например, двигатели внутреннего сгорания), на ядерной энергии (РИТЭГ), на электричестве (двигатели электромобилей), на водороде, на газу, на дизельном топливе и на многом другом. Тип топлива двигателя определяет его экологичность и другие качества. Двигатели прошли довольно длинную историю, но она еще далеко не окончена. Ученые и инженеры постоянно думают над новым топливом и новыми двигателями, стремясь уместить больше энергии в меньшее количество расходов.

Прямо сейчас на орбите Земли работает тысяча искусственных спутников, практически каждый из которых передвигается при помощи дорогостоящих ионных двигателей со сроком службы не более трех лет. Если эти двигатели такие дорогие и недолговечные, почему бы ученым не разработать более дешевый и надежный вариант управления спутниками? Многих это удивит, но он уже создан и применен в - он движется вокруг планеты за счет солнечных частиц, которые толкают прикрепленный к спутнику парус. Огромное и блестящее полотно было развернуто 23 июля, и его вполне можно разглядеть с Земли.

В конце 2018 года, в ходе очередной переписки в твиттере, основатель SpaceX упомянул российский ракетный двигатель РД-180. Он признал его конструкцию «блестящей» и намекнул, что компаниям Boeing и Lockheed должно быть стыдно за его использование в ракете Atlas. Он пообещал, что его двигатель Raptor опередит российскую разработку, и сдержал слово - стало известно, что ракетный двигатель для космического корабля Starship опередил РД-180 по уровню давления в камере сгорания.

Л етом 2017 года научно-техническое сообщество облетела новость – молодой учёный из Екатеринбурга победил в общероссийском конкурсе инновационных проектов в области энергетики. Конкурс называется «Энергия прорыва», к участию допускаются учёные не старше 45 лет, и Леонид Плотников, доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ), удостоился в нём приза в 1 000 000 рублей.

Сообщалось, что Леонид разработал четыре оригинальных технических решения и получил семь патентов для систем впуска и выпуска ДВС, как турбированных, так и атмосферных. В частности, доработка впускной системы турбомотора «по методу Плотникова» способна исключить перегрев, снизить шумность и количество вредных выбросов. А модернизация выпускной системы турбированного ДВС на 2% повышает КПД и на 1,5% снижает удельный расход топлива. В итоге мотор становится более экологичным, стабильным, мощным и надёжным.

Действительно ли всё это так? В чём суть предложений учёного? Нам удалось побеседовать с победителем конкурса и всё разузнать. Из всех оригинальных технических решений, разработанных Плотниковым, мы остановились как раз на обозначенных выше двух: доработанных системах впуска и выпуска турбированных моторов. Возможно, стиль изложения поначалу покажется вам сложным для восприятия, но читайте вдумчиво, и в конце мы доберёмся до сути.

Проблемы и задачи

Авторство описанных ниже разработок принадлежит группе учёных УрФУ, в которую входят доктор технических наук, профессор Бродов Ю.М., доктор физико-математических наук, профессор Жилкин Б.П. и кандидат технических наук, доцент Плотников Л.В. Работа именно этой группы удостоилась гранта в миллион рублей. В инженерной проработке предлагаемых технических решений им помогали специалисты ООО «Уральский дизель-моторный завод», а именно, начальник отдела, кандидат технических наук Шестаков Д.С. и заместитель главного конструктора, кандидат технических наук Григорьев Н.И.

Одним из ключевых параметров их исследования стала теплоотдача, идущая от потока газа в стенки впускного или выпускного трубопровода. Чем теплоотдача ниже, тем меньше термические напряжения, выше надёжность и производительность системы в целом. Для оценки интенсивности теплоотдачи используют параметр, который называется локальным коэффициентом теплоотдачи (он обозначается как αх), и задача исследователей состояла в том, чтобы найти пути уменьшения этого коэффициента.



Рис. 1. Изменение локального (lх = 150 мм) коэффициента теплоотдачи αх (1) и скорости потока воздуха wх (2) во времени τ за свободным компрессором турбокомпрессора (далее – ТК) при гладком круглом трубопроводе и разных частотах вращения ротора ТК: а) nтк = 35 000 мин-1; б) nтк = 46 000 мин-1

Вопрос для современного двигателестроения серьёзный, поскольку газовоздушные тракты входят в перечень наиболее термонагруженных элементов современных ДВС, и особенно остро задача снижения теплоотдачи в впускном и выпускном трактах стоит для турбированных двигателей. Ведь в турбомоторах, по сравнению с атмосферниками, повышены давление и температура на впуске, увеличена средняя температура цикла, выше пульсация газа, которая вызывает термомеханические напряжения. Термонагруженность ведёт к усталости деталей, снижает надёжность и срок службы элементов двигателя, а также приводит к неоптимальным условиям сгорания топлива в цилиндрах и падению мощности.

Учёные считают, что термическую напряженность турбодвижка можно снизить, и тут, как говорится, есть нюанс. Обычно для турбокомпрессора считаются важными две его характеристики – давление наддува и расход воздуха, а сам узел в расчётах принимается статичным элементом. Но на самом деле, отмечают исследователи, после установки турбокомпрессора существенно изменяются тепломеханические характеристики потока газа. Поэтому прежде чем изучать то, как меняется αх на впуске и выпуске, надо исследовать сам поток газа закомпрессором. Сначала – без учёта поршневой части двигателя (что называется, за свободным компрессором, см. рис. 1), а потом – вместе с ней.

Была разработана и создана автоматизированная система сбора и обработки экспериментальных данных – с пары датчиков снимались и обрабатывались значения скорости потока газа wх и локального коэффициента теплоотдачи αх. Кроме того, была собрана одноцилиндровая модель двигателя на базе мотора ВАЗ-11113 с турбокомпрессором ТКР-6.



Рис. 2. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом при разных частотах вращения коленчатого вала и разных частотах вращения ротора ТК: а) n = 1 500 мин-1; б) n = 3 000 мин-1, 1 - n = 35 000 мин-1; 2 - nтк = 42 000 мин-1; 3 - nтк = 46 000 мин-1

Проведённые исследования показали, что турбокомпрессор – мощнейший источник турбулентности, которая влияет на тепломеханические характеристики потока воздуха (см. рис. 2). Кроме того, исследователи установили, что сама по себе установка турбокомпрессора повышает αх на впуске двигателя примерно на 30% - отчасти из-за того, что воздух после компрессора просто значительно горячее, чем на впуске атмосферного мотора. Была замерена и теплоотдача на выпуске мотора с установленным турбокомпрессором, и оказалось, что чем выше избыточное давление, тем менее интенсивно происходит теплоотдача.


Рис. 3. Схема впускной системы двигателя с наддувом с возможностью сброса части нагнетаемого воздуха: 1 - впускной коллектор; 2 - соединительный патрубок; 3 - соединительные элементы; 4 - компрессор ТК; 5 - электронный блок управления двигателем; 6 - электропневмоклапан].

В сумме получается, что для снижения термонагруженности необхожимо следующее: во впускном тракте нужно уменьшать турбулентность и пульсацию воздуха, а на выпуске – создавать дополнительное давление или разрежение, разгоняя поток – это снизит теплоотдачу, а кроме того, положительно скажется на очистке цилиндров от отработанных газов.

Все эти вроде бы очевидные вещи нуждались в детальных замерах и в анализе, которого никто ранее не делал. Именно полученные цифры позволили выработать меры, которые в будущем способны если не произвести революцию, то уж точно вдохнуть, в прямом смысле слова, новую жизнь во всю отрасль двигателестроения.


Рис. 4. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом (nтк = 35 000 мин-1) при частоте вращения коленчатого вала n = 3 000 мин-1. Доля сброса воздуха: 1 - G1 = 0,04; 2 - G2 = 0,07; 3 - G3 = 0,12].

Сброс избытка воздуха на впуске

Во-первых, исследователи предложили конструкцию, позволяющую стабилизировать поток воздуха на впуске (см. рис. 3). Электропневмоклапан, врезанный во впускной тракт после турбины и в определённые моменты сбрасывающий часть сжатого турбокомпрессором воздуха, стабилизирует поток– уменьшает пульсацию скорости и давления. В итоге это должно привести к снижению аэродинамического шума и термических напряжений во впускном тракте.

А сколько же нужно сбросить, чтобы система эффективно работала, не ослабляя значительно эффекта турбонаддува? На рисунках 4 и 5 мы видим результаты проведённых замеров: как показывают исследования, оптимальная доля сбрасываемого воздуха G лежит в диапазоне от 7 до 12% – такие значения снижают теплоотдачу (а значит – и термонагруженность) во впускном тракте двигателя до 30%, то есть, приводят её к значениям, характерным для атмосферных моторов. Дальше увеличивать долю сброса смысла нет – эффекта это уже не даёт.


Рис. 5. Сравнение зависимостей локального (lх = 150 мм, d = 30 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом без сброса (1) и со сбросом части воздуха (2) при nтк = 35 000 мин-1 и n = 3 000 мин-1, доля сброса избыточного воздуха равна 12% от общего расхода].

Эжекция на выпуске

Ну а что же выпускная система? Как мы говорили выше, она в турбированном моторе тоже работает в условиях повышенных температур, а кроме того, выпуск всегда хочется сделать как можно более способствующим максимальной очистке цилиндров от отработавших газов. Традиционные методы решения этих задач уже исчерпаны, есть ли тут ещё какие-то резервы для улучшения? Оказывается, есть.

Бродов, Жилкин и Плотников утверждают, что улучшить газоочистку и надёжность выпускной системы можно путём создания в ней дополнительного разрежения, или эжекции. Эжекционный поток, по мнению разработчиков, так же, как и клапан на впуске, снижает пульсацию потока и увеличивает объёмный расход воздуха, что способствует лучшей очистке цилиндров и повышению мощности двигателя.


Рис. 6. Схема выпускной системы с эжектором: 1 – головка цилиндра с каналом; 2 – выпускной трубопровод; 3 – труба выхлопная; 4 – эжекционная трубка; 5 – электропневмоклапан; 6 – электронный блок управления].

Эжекция положительно влияет на теплоотдачу от выпускных газов к деталям выпускного тракта (см. рис. 7): с такой системой максимальные значения локального коэффициента теплоотдачи αхполучаются на 20% ниже, чем при традиционном выпуске – за исключением периода закрытия впускного клапана, тут интенсивность теплоотдачи, напротив, несколько выше. Но в целом теплоотдача всё равно меньше, и исследователи сделали предположение, что эжектор на выпуске турбомотора повысит его надёжность, так как снизит теплоотдачу от газов стенкам трубопровода, а сами газы будут охлаждаться эжекционным воздухом.


Рис. 7.Зависимости локального (lх = 140 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ в выпускной системе при избыточном давлении выпуска рb = 0,2 МПа и частоте вращения коленчатого вала n = 1 500 мин-1. Конфигурация выпускной системы: 1 - без эжекции; 2 - с эжекцией.]

А если объединить?..

Получив такие выводы на экспериментальной установке, учёные пошли дальше и применили полученные знания на реальном двигателе – в качестве одного из «подопытных» был выбран дизель 8ДМ-21ЛМ производства ООО «Уральский дизель-моторный завод».Такие моторы применяются в качестве стационарных энергоустановок. Кроме того, в работах использовался и «младший брат» 8-цилиндрового дизеля, 6ДМ-21ЛМ, также V-образный, но имеющий шесть цилиндров.


Рис. 8. Установка электромагнитного клапана для сброса части воздуха на дизеле 8ДМ-21ЛМ: 1 - клапан электромагнитный; 2 - впускной патрубок; 3 - кожух выпускного коллектора; 4 - турбокомпрессор.

На «младшем» моторе была реализована система эжекции на выпуске, логично и весьма остроумно объединённая с системой сброса давления на впуске, которую мы рассмотрели чуть ранее – ведь как было показано на рисунке 3, сбрасываемый воздух может использоваться для нужд двигателя. Как видим (рис. 9), над выпускным коллектором проложены трубки, в которые подаётся воздух, забранный со впуска – это то самое избыточное давление, создающее турбулентность после компрессора. Воздух из трубок «раздаётся» через систему электроклапанов, которые стоят сразу за выпускным окном каждого из шести цилиндров.


Рис. 9. Общий вид модернизированной выпускной системы двигателя 6ДМ-21ЛМ: 1 – выпускной трубопровод; 2 – турбокомпрессор; 3 – газоотводящий патрубок; 4 – система эжекции.

Такое эжекционное устройство создаёт дополнительное разрежение в выпускном коллекторе, что ведёт к выравниванию течения газов и ослаблению переходных процессов в так называемом переходном слое. Авторы исследования замерили скорость потока воздуха wх в зависимости от угла поворота коленчатого вала φ с применением эжекции на выпуске и без неё.

Из рисунка 10 видно, что при эжекции максимальная скорость потока выше, а после закрытия выпускного клапана она падает медленнее, чем в коллекторе без такой системы – получается своеобразный «эффект продувки». Авторы говорят, что результаты свидетельствуют о стабилизации потока и лучшей очистке цилиндров двигателя от отработавших газов.


Рис. 10. Зависимости местной (lx = 140 мм, d = 30 мм) скорости потока газа wх в выпускном трубопроводе с эжекцией (1) и традиционном трубопроводе (2) от угла поворота коленчатого вала φ при частоте вращения коленчатого вала n = 3000 мин-1 и начальном избыточном давлении pb = 2,0 бар.

Что в итоге

Итак, давайте по порядку. Во-первых, если из впускного коллектора турбомотора сбрасывать небольшую часть сжатого компрессором воздуха, можно снизить теплоотдачу от воздуха к стенкам коллектора до 30% и при этом сохранить массовый расход воздуха, поступающего в мотор, на нормальном уровне. Во-вторых, если применить эжекцию на выпуске, то теплоотдачу в выпускном коллекторе тоже можно существенно снизить – проведённые замеры дают величину около 15%, – а также улучшить газоочистку цилиндров.

Объединяя показанные научные находки для впускного и выпускного трактов в единую систему, мы получим комплексный эффект: забирая часть воздуха со впуска, передавая её на выпуск и точно синхронизировав эти импульсы по времени, система будет выравнивать и «успокаивать» процессы течения воздуха и отработавших газов. В результате мы должны получить менее термонагруженный, более надёжный и производительный по сравнению с обычным турбомотором двигатель.

Итак, результаты получены в лабораторных условиях, подтверждены математическим моделированием и аналитическими расчетами, после чего создан опытный образец, на котором проведены испытания и подтверждены положительные эффекты. Пока всё это реализовано в стенах УрФУ на большом стационарном турбодизеле (моторы такого типа используют также на тепловозах и судах), однако заложенные в конструкцию принципы могли бы прижиться и на моторах поменьше – представьте, например, что ГАЗ Газель, УАЗ Патриот или LADA Vesta получают новый турбомотор, да ещё с характеристиками лучше, чем у зарубежных аналогов… Возможно ли, чтобы новая тенденция в двигателестроении началась в России?

Есть у учёных из УрФУ и решения для снижения термонагруженности атмосферных моторов, и одно из них – профилирование каналов: поперечное (путём введения вставки квадратного или треугольного сечения) и продольное. В принципе, по всем этим решениям сейчас можно строить рабочие образцы, проводить испытания и при их положительном исходе запускать серийное производство – заданные проектно-конструкторские направления, по мнению учёных, не требуют значительных финансовых и временных затрат. Теперь должны найтись заинтересованные производители.

Леонид Плотников говорит, что считает себя в первую очередь учёным и не ставит цели коммерциализировать новые разработки.

Среди целей я, скорее, назвал бы проведение дальнейших исследований, получение новых научных результатов, разработку оригинальных конструкций газовоздушных систем поршневых ДВС. Если мои результаты будут полезны промышленности, то я буду рад. По опыту знаю, что внедрение результатов – очень сложный и трудоемкий процесс, и если в него погружаться, то на науку и преподавание не останется времени. А я больше склонен именно к области образования и науки, а не к промышленности и бизнесу

доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ)


Однако добавляет, что уже начался процесс внедрения результатов исследования на энергомашины ПАО «Уралмашзавод». Темпы внедрения пока невысоки, вся работа находится на начальном этапе, и конкретики очень мало, однако заинтересованность у предприятия есть. Остаётся надеяться на то, что результаты этого внедрения мы всё же увидим. А также на то, что работа учёных найдёт применение в отечественном автопроме.

А как вы оцениваете результаты исследования?

Какие критерии считают ключевыми для выбора «самого-самого»? Есть ли принципиальные отличия в подходе к конструированию на разных континентах? Попробуем найти ответы на эти вопросы.

ЕВРОПА: В РЕЖИМЕ ЭКОНОМИИ

На недавней пресс-конференции в Лондоне глава концерна «Пежо-Ситроен» Жан-Мартин Фольц весьма неожиданно для многих отозвался о гибридных автомобилях: «Посмотрите вокруг: таких машин в Европе менее 1%, тогда как доля дизелей достигает половины». По мнению господина Фольца, современный дизель гораздо дешевле в производстве, будучи не менее экономичен и экологичен.

Времена, когда дизели оставляли за собой черный шлейф, тарахтели на всю улицу и заметно уступали по литровой мощности бензиновым моторам, прошли. Сегодня удельная доля дизелей в Европе составляет 52% и продолжает расти. Толчок дают, например, экологические бонусы в виде сниженных налогов, но прежде всего - дороговизна бензина.

Прорыв на дизельном фронте произошел к концу 90-х, когда в серию пошли первые моторы с «коммон рейл» - общей топливной рампой. С тех пор давление в ней неуклонно растет. В новейших двигателях оно достигает 1800 атмосфер, а ведь еще недавно 1300 атмосфер считались выдающимся показателем.

На очереди - системы с двукратным повышением давления впрыска. Сначала насос нагнетает топливо в аккумулирующий резервуар до 1350 атм. Затем давление поднимают до 2200 атм, под которыми оно и поступает в форсунки. Под таким давлением топливо впрыскивают через отверстия меньшего диаметра. Это улучшает качество распыла, повышает точность дозировки. Отсюда выигрыш в экономичности и мощности.

Уже не первый год применяют пилотный впрыск: первая «партия» горючего поступает в цилиндры чуть раньше основной дозы, чем достигается более мягкая работа мотора и чистый выхлоп.

Помимо «коммон рейла», есть иное техническое решение, чтобы поднять давление впрыска на небывалую высоту. Насос-форсунки перебрались с грузовых моторов и на легковые дизели. Им привержен, в частности, «Фольксваген », составляя здоровую конкуренцию «общей рампе».

Одним из камней преткновения на пути дизеля всегда был экологический. Если бензиновые моторы журили за угарный газ, окиси азота и углеводороды в выхлопе, то дизели - за соединения азота и частицы сажи. Введение в прошлом году норм Евро IV далось непросто. С окислами азота справились посредством нейтрализатора, а вот сажу ловит особый фильтр. Он служит до 150 тыс. км, после чего его либо меняют, либо «прокаливают». По команде управляющей электроники в цилиндр подаются отработавшие газы из системы рециркуляции и большая доза топлива. Температура выхлопа повышается, и сажа выгорает.

Примечательно, что большинство новых дизелей могут работать на биодизельном горючем: в его основе лежат растительные масла, а не нефтепродукты. Это горючее менее агрессивно к окружающей среде, поэтому его массовая доля на рынке Европы должна достигнуть к 2010 году 30%.

Пока же специалисты отмечают совместную разработку «Дженерал моторс» и ФИАТ - один из «Двигателей года 2005». Малолитражный дизель благодаря электронике способен оперативно менять параметры впрыска и тем самым обеспечивать больший момент и быстрый пуск двигателя. Широкое использование алюминия, существенно снизившее массу и размеры, в сочетании с достаточной мощностью 70 л.с. и немалым крутящим моментом 170 Н.м позволили 1,3-литровому мотору набрать большое число голосов.

Учитывая все достижения на дизельном фронте, можно смело утверждать - ближайшее будущее Европы именно за этими двигателями. Они становятся мощнее, тише и удобнее для повседневной езды. С учетом теперешних цен на нефть потеснить их в Старом Свете не способен ни один из существующих типов двигателей.

АЗИЯ: БОЛЬШЕ СИЛ НА ЛИТР

Главное достижение японских двигателистов за последний десяток лет - высокая литровая мощность. Загнанные законодательством в узкие рамки, инженеры ухитряются добиться отменных результатов самыми разными способами. Яркий пример - изменяемые фазы газораспределения. В конце 80-х японская «Хонда » с ее системой VTEC совершила настоящий переворот.

Необходимость варьировать фазы диктуется различными режимами движения: в городе важнее всего экономичность и крутящий момент на низких оборотах, на трассе - на высоких. Отличаются и пожелания покупателей в разных странах. Раньше настройки мотора были постоянными, теперь же стало возможным менять их в буквальном смысле на ходу.

Современные моторы «Хонда » оснащают несколькими типами VTEC, в том числе и трехступенчатым устройством. Здесь корректируются параметры не только на низких и высоких оборотах, но и на средних. Так удается совместить несовместимое: высокую удельную мощность (до 100 л.с./л), расход топлива в режиме 60–70 км/ч на уровне 4 л на сотню и высокий крутящий момент в диапазоне от 2000 до 6000 об/мин.

В результате японцы успешно снимают высокую мощность с весьма скромных объемов. Рекордсменом по этому показателю который год подряд остается родстер «Honda S2000 » с безнаддувным 2-литровым двигателем мощностью 250 л.с. Несмотря на то, что мотор появился еще в 1999 году, он по-прежнему в числе лучших - второе место среди претендентов 2005 года объемом 1,8–2,0 л. Вторым бесспорным достижением японцев являются гибридные установки. «Гибрид Синержи Драйв» производства «Тойоты» отметился среди призеров не один раз, набрав наибольшее число баллов в номинации «экономичный двигатель». Заявленный показатель - 4,2 л/100 км для такой немаленькой машины, как «Тойота Приус », безусловно хорош. Мощность «Синержи Драйв» достигает 110 л.с., а суммарный момент бензиноэлектрической установки- выдающийся - 478 Н.м!

Кроме топливной экономичности, подчеркивается экологический аспект: выброс углеводородов и окислов азота у мотора на 80 и 87,5% ниже, чем того требуют нормы Евро IV для бензиновых моторов, и на 96% ниже требований к дизелям. Таким образом, «Синержи Драйв» с запасом укладывается в самые жесткие в мире рамки - ZLEV, планируемые к введению в Калифорнии.

В последние годы наметилась любопытная тенденция: применительно к гибридам речь все реже идет об абсолютных рекордах экономичности. Возьмем «Lexus RX 400h». Этот автомобиль расходует вполне обычные 10 л в городском цикле. С одной оговоркой - это очень мало, учитывая мощность основного мотора 272 л.с. и момент 288 Н.м!

Если японским компаниям, в первую очередь «Тойоте» и «Хонде», удастся снизить себестоимость агрегатов, продажи гибридов могут подскочить на порядок уже в ближайшие 5–10 лет.

АМЕРИКА: ДЕШЕВО И СЕРДИТО

На форумах американских автомобилей после проведения конкурса «Двигатель года» обязательно возникают дебаты: как это так, в числе победителей нет ни одного двигателя нашей разработки! Все просто: американцы, несмотря на продолжающийся топливный кризис, не слишком преуспели в экономии бензина, а про дизельное топливо и слышать не хотят! Но это не значит, что им нечем похвастать.

К примеру, «крайслеровские» моторы серии «Хеми», блиставшие на мощных моделях (их традиционно именуют в США «масл карз») еще в 50-х. Их название ведет родословную от английского hemispherical - полусферический. Конечно, за полвека многое изменилось, но, как и раньше, у современных «хеми» полусферические камеры сгорания.

Традиционно во главе линейки моторов стоят агрегаты неприличного по европейским меркам литража - вплоть до 6,1 л. Стоит открыть проспект, в глаза бросается разница в подходах к конструированию. «Лучшая в классе мощность», «самый быстрый разгон», «низкий уровень шума»… о расходе топлива говорится вскользь. Хотя он, конечно, небезразличен инженерам. Просто приоритеты несколько иные - динамические характеристики и… невысокая себестоимость агрегата.

В моторах «Хеми» нет изменяемых фаз. Они не столь форсированы и не могут даже близко подойти к лучшим японским агрегатам по литровой мощности. Зато в них применена хитроумная система MDS (Multi Displacement System - система нескольких объемов). Как намекает название, ее смысл кроется в отключении четырех из восьми цилиндров двигателя, когда не требуется использовать все 335 «лошадей» и 500 Н.м момента, например у двигателя объемом 5,7л. На отключение уходит всего 40 миллисекунд. Подобные системы прежде использовал «Джи-Эм», а у «Крайслера» это первый опыт. По заверению фирмы, MDS позволяет сэкономить до 20% топлива, в зависимости от манеры вождения. Боб Ли, вице-президент отделения двигателей «Крайслер », очень горд новым мотором: «Отключение цилиндров происходит элегантно и просто… преимущества - надежность и низкая цена».

Естественно, отключаемыми цилиндрами американские инженеры не ограничиваются. Они готовят и совсем другие разработки, например силовые установки на топливных элементах. Судя по появлению все новых концепт-каров именно с такими моторами, их будущее рисуется в розовых тонах.

Конечно, мы отметили лишь наиболее яркие особенности «национального двигателестроения». Современный мир слишком тесен, чтобы в нем бок о бок существовали принципиально разные культуры, не оказывая влияния друг на друга. Быть может, однажды выведут рецепт идеального «глобального» мотора? Пока каждый предпочитает бежать своей дорожкой: Европа готовится перевести чуть не половину парка на рапсовое масло; Америка хоть и старается не замечать происходящих в мире перемен, постепенно отвыкает от прожорливых мастодонтов и раздумывает над переводом инфраструктуры всей страны на водородное топливо; ну а Япония… как всегда, берет высокими технологиями и ошеломляющей скоростью их внедрения в жизнь.

ДИЗЕЛЬ «ПСА-ФОРД»

В ближайшее время начнется производство двух новых моторов, разработанных совместно концерном «Пежо-Ситроен» и «Фордом» (журналистам их представляет инженер «Форда» Фил Лэйк). Дизели объемом 2,2 л адресованы коммерческим и легковым автомобилям. Система «коммон рейл» отныне работает под давлением 1800 атм. Топливо впрыскивается в камеру сгорания через семь 135-микронных отверстий в пьезоэлектрических форсунках (ранее их было пять). Теперь стало возможным впрыскивать топливо до шести раз за один оборот коленчатого вала. Результат - более чистый выхлоп, экономия топлива, снижение вибраций.

Применили два компактных малоинерционных турбокомпрессора. Первый ответствен исключительно за «низы», второй подключается после 2700 об/мин, обеспечивая плавную кривую крутящего момента, достигающего 400 Н.м при 1750 об/мин и мощности 125 л.с. при 4000 об/мин. Масса двигателя по сравнению с предыдущим поколением снижена на 12 кг благодаря новой архитектуре блока цилиндров.

На сегодняшний день двигатели внутреннего сгорания переживают не лучший период своей жизни. Постоянный рост цен на нефть, глобальное потепление, в котором винят и их тоже, а также растущие «зеленые» настроения в развитых странах не прибавляют авторитета двигателям внутреннего сгорания.

Но, не смотря на все свои минусы, мы с ними не сможем распрощаться еще на протяжении многих десятилетий. Однако мы можем попытаться сократить немалые аппетиты наших любимцев, тратя меньше энергии на выделение тепла и выжимая из каждой капли топлива тот максимум, который позволяет нам физика.

И, правда, двигатель внутреннего сгорания совсем не безнадежен. В новых автомобильных разработках, и научных лабораториях по всему миру бензиновый двигатель испытывает что-то похожее на Ренессанс.

Защитники экологии не должны бояться этого возрождения двигателей внутреннего сгорания. Так как данные новшества не просто решительно уменьшают количество вредного топлива, они служат технологическим мостом, который приведет нас к полностью электрофицированому будущему. Большинство таких технологий находиться все еще на стадии разработок, ожидая финансирования, или внедрены пока только в опытные образцы, для демонстрации своих возможностей. Не одно из данных решений не является панацеей, но каждое из них показывает, насколько меньше мы могли бы использовать топлива, делая автомобили намного эффективнее.

В прошлом веке бензиновые двигатели стали повсеместны, в этом столетии они станут еще и умными. Рассмотрим некоторые из новых технологий будущего двигателей внутреннего сгорания:

Двигатель Scuderi

Группа Scuderi представляет двигатель разделенного цикла - он делит четыре обычных поршневых цилиндра на два различных типа для более разумного использования каждой капли энергии, которую они могут выработать.

Принцип действия технологии заключается в соединение двух цилиндров между собой. В отличии от обычных двигателей, которые во время четвертого такта выбрасывают сжатые газы, двигатель Scuderi впрыскивает сжатый воздух во второй цилиндр, где проходит воспламенение и выхлоп.

Благодаря данной технологии мы можем использовать два цилиндра из четырех бесплатно. Как показывают компьютерные модели, двигатель Scuderi улучшает экономию по сравнению со своими обычными аналогами на 50 процентов.

Разделение двигателя на горячую и холодную части

Как и предыдущий данный двигатель делиться на две рабочие части, но по сравнению с Scuderi дополнительно использует разные температуры в разных частях двигателя, для достижения максимального КПД.

Большая проблема в обычном четырехтактном двигателе - первые два такта (впуск и сжатие) наиболее эффективны при холоде, в то время третий и четвертый такты работают лучше в горячих условиях. Как утверждают инженеры, если придерживаться данных требований, можно добиться до 40 процентов экономии. Просто отделив область высокой температуры радиатором.

Процесс проходит следующим образом: впуск и сжатие происходят в холодном цилиндре, гарантируя максимальную эффективность при этом, а сгорание и выхлоп сжатой в холодной части смеси происходят в горячем цилиндре. Данная технология дает до 20 процентов экономии топлива, но ученые надеются усовершенствовать систему и выжать из нее 50 процентов.

Двигатель Pinnacle


В данном виде двигателей поршни расположены противоположно друг к другу. Но в отличие от оппозитных двигателей, которые сейчас широко распространены, тут на одну головку цилиндра приходиться два поршня, соответственно взрыв горючей смеси происходит между двумя поршнями. При таком расположении поршней получается колоссальная экономия энергии, которая в привычных двигателях внутреннего сгорания тратиться на выделение высокой температуры.

Первые малолитражки с таким типом двигателей должны быть выпущены уже в 2015, а большие двигатели будут готовы к 2016. Инженеры ожидают увеличение эффективности данного двигателя до 50 процентов.

Данная схема двигателя объединяет в себе конструкции известного многим оппозитного двигателя и описанного выше двигателя Pinnacle. В данной конструкции два поршня расположены в одной головке цилиндра, а два других находятся тоже вместе под углом 180 градусов.

В обоих цилиндрах сгорание происходит в центре, между поршнями, длинные шатуны соединяют наиболее удаленные поршни с коленчатым валом, который расположен посредине. Как и другие оппозитные двигатели, OPOC не нуждается в тяжелых головках цилиндров, снижая вес двигателя. Ход поршней в таком двигателе, меньше чем в обычных бензиновых двигателях.

Инженеры Ecomotors надеяться создать демонстрационный автомобиль с двигателем OPOC, который на 2 литрах топлива будет проезжать до 100 км.

Замена обычных свечей зажигания на лазеры


Лазеры стают все лучше, и теперь их можно использовать в двигателях внутреннего сгорания. В свечах, которые используются сегодня, есть одна проблема, для сжигания большего количества воздуха и меньшего количества топлива нужна сильная искра. Но если увеличить мощность искры, будут быстро изнашиваться электроды. Идеальным выходом из данной ситуации может быть использование лазеров. У лазеров есть большой плюс по сравнению с обычными свечами зажигания, их можно очень точно настроить: установить нужную мощность, угол зажигания, тем самым увеличив мощность и эффективность процесса сгорания.

Японские инженеры уже разработали керамические лазеры диаметром 9 мм специально для двигателей внутреннего сгорания. Такие нововведения будут достаточно эффективны и не требуют серьезных доработок в существующих двигателях.

Процесс сгорания TSCiTM

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость - это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное -- вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95?97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает -- ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI -- пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них -- неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный -- компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов -- в режиме HCCI. Инженеры Nissan также не стоят на месте -- недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.

Горячая стена

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Скудери.

Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, где создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, ее форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в камере смешивается с топливом и возгорается. Процесс сгорания намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда -- «горячая стена», которая служит аккумулятором энергии: неизменная температура и давление в ней сохраняются в 10?100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр.