Тепловые двигатели кпд тепловых машин. Тепловой двигатель

Класс: 10

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Задачи урока:

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

Фронтальный опрос:

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0 , Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q 1 – количество теплоты полученное от нагревания Q 1 >Q 2

Q 2 – количество теплоты отданное холодильнику Q 2

A / = Q 1 – |Q 2 | – работа совершаемая двигателем за цикл? < 1.

Цикл C. Карно (Слайд 9)

T 1 – температура нагревания.

Т 2 – температура холодильника.

На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. На водном транспорте также использовались вначале паровые двигатели, сейчас используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80 % всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях.Газовые турбины широко используются в ракетах, в железнодорожном и автомобильном транспорте.

На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели).

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах – турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах. (Слайд 10)

(Показ видеофрагментов работы турбореактивного двигателя.)

Рассмотрим более подробно работу двигателя внутреннего сгорания. Просмотр видеофрагмента. (Слайд 11)

Работа четырехтактного ДВС.
1 такт: впуск.
2 такт: сжатие.
3 такт: рабочий ход.
4 такт: выпуск.
Устройство: цилиндр, поршень, коленчатый вал, 2 клапана(впуск и выпуск), свеча.
Мертвые точки – крайнее положение поршня.
Сравним эксплуатационные характеристики тепловых двигателей.

  • Паровой двигатель – 8%
  • Паровая турбина – 40%
  • Газовая турбина – 25-30%
  • Двигатель внутреннего сгорания – 18-24%
  • Дизельный двигатель – 40– 44%
  • Реактивный двигатель – 25% (Слайд 112)

Тепловые двигатели и охрана окружающей среды (Слайд 13)

Неуклонный рост энергетических мощностей – все большее распространение укрощенного огня – приводит к тому, что количество выделяемой теплоты становится сопоставимым с другими компонентами теплового баланса в атмосфере. Это не может не приводить к повышению средней температуры на Земле. Повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня Мирового океана. Но этим не исчерпываются негативные последствия применения тепловых двигателей. Растет выброс в атмосферу микроскопических частиц – сажи, пепла, измельченного топлива, что приводит к увеличению “парникового эффекта”, обусловленного повышением концентрации углекислого газа в течение длительного промежутка времени. Это приводит к повышению температуры атмосферы.

Выбрасываемые в атмосферу токсические продукты горения, продукты неполного сгорания органического топлива – оказывают вредное воздействие на флору и фауну. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена.

Все это ставит ряд серьезных проблем перед обществом. (Слайд 14)

Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях, а также увеличения эффективности использования энергии, экономии ее на производстве и в быту.

Альтернативные двигатели:

  • 1. Электрические
  • 2. Двигатели, работающие на энергии солнца и ветра (Слайд 15)

Пути решения экологических проблем:

    Использование альтернативного топлива.

    Использование альтернативных двигателей.

    Оздоровление окружающей среды.

    Воспитание экологической культуры. (Слайд 16)

5. Закрепление материала

Всем вам предстоит всего лишь через год сдавать единый государственный экзамен. Предлагаю вам решить несколько задач из части А демоверсии по физике за 2009 год. Задание вы найдете на рабочих столах ваших компьютеров.

6. Подведение итогов урока

С момента, когда была построена первая паровая машина, до настоящего времени прошло более 240 лет. За это время тепловые машины сильно изменили содержание жизнь человека. Именно применение этих машин позволило человечеству шагнуть в космос, раскрыть тайны морских глубин.

Выставляет оценки за работу на уроке.

7. Домашнее задание:

§ 82 (Мякишев Г.Я.), упр. 15 (11, 12) (Слайд 17)

8. Рефлексия

Прежде чем покинуть класс просьба заполнить таблицу.

На уроке я работал

активно / пассивно

Своей работой на уроке я

доволен / не доволен

Урок для меня показался

коротким / длинным

За урок я

не устал / устал

Работа, совершаемая двигателем, равна:

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

A 12 = Q 1 ,

Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

A 23 = -ΔU 23 ,

Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2 < T 1 . В процессе (3-4) газ изотермически сжимает-ся, передавая холодильнику количество теплоты Q 2 :

A 34 = Q 2 ,

Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры Т 1 .

Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

.

Суть формулы выражена в доказанной С . Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.

Энциклопедичный YouTube

  • 1 / 5

    Математически определение КПД может быть записано в виде:

    η = A Q , {\displaystyle \eta ={\frac {A}{Q}},}

    где А - полезная работа (энергия), а Q - затраченная энергия.

    Если КПД выражается в процентах, то он вычисляется по формуле:

    η = A Q × 100 % {\displaystyle \eta ={\frac {A}{Q}}\times 100\%} ε X = Q X / A {\displaystyle \varepsilon _{\mathrm {X} }=Q_{\mathrm {X} }/A} ,

    где Q X {\displaystyle Q_{\mathrm {X} }} - тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A {\displaystyle A}

    Для тепловых насосов используют термин коэффициент трансформации

    ε Γ = Q Γ / A {\displaystyle \varepsilon _{\Gamma }=Q_{\Gamma }/A} ,

    где Q Γ {\displaystyle Q_{\Gamma }} - тепло конденсации, передаваемое теплоносителю; A {\displaystyle A} - затрачиваемая на этот процесс работа (или электроэнергия).

    В идеальной машине Q Γ = Q X + A {\displaystyle Q_{\Gamma }=Q_{\mathrm {X} }+A} , отсюда для идеальной машины ε Γ = ε X + 1 {\displaystyle \varepsilon _{\Gamma }=\varepsilon _{\mathrm {X} }+1}

    Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

    ε = T X T Γ − T X {\displaystyle \varepsilon ={T_{\mathrm {X} } \over {T_{\Gamma }-T_{\mathrm {X} }}}} , поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

    Тепловой двигатель (машина) — это устройство, преобразующее внутреннюю энергию топлива в механическую работу, обмениваясь теплотой с окружающими телами. Большинство современных автомобильных, самолетных, судовых и ракетных двигателей сконструированы на принципах работы теплового двигателя. Работа производится за счет изменения объема рабочего вещества, а для характеристики эффективности работы любого типа двигателя используется величина, которая называется коэффициентом полезного действия (КПД).

    Как устроен тепловой двигатель

    С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

    Рис. 1. Структурная схема работы теплового двигателя:.

    Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

    Общая схема работы любой тепловой машины выглядит так:

    • Нагреватель имеет температуру T 1 достаточно высокую, чтобы передать большое количество теплоты Q 1 . В большинстве тепловых машин нагревание получается при сгорании топливной смеси (топливо-кислород);
    • Рабочее тело (пар или газ) двигателя совершает полезную работу А, например, перемещают поршень или вращают турбину;
    • Холодильник поглощает часть энергии от рабочего тела. Температура холодильника Т 2 < Т 1 . То есть, на совершение работы идет только часть теплоты Q 1 .

    Тепловая машина (двигатель) должен работать непрерывно, поэтому рабочее тело должно вернуться в исходное состояние, чтобы его температура стала равна T 1 . Для непрерывности процесса работа машины должна происходить циклически, периодически повторяясь. Чтобы создать механизм цикличности — вернуть рабочее тело (газ) в исходное состояние — нужен холодильник, чтобы охладить газ в процессе сжатия. Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или холодная вода (для паровых турбин).

    Чему равен КПД теплового двигателя

    Для определения эффективности тепловых двигателей французский инженер-механик Сади Карно в 1824г. ввел понятие КПД теплового двигателя. Для обозначения КПД используется греческая буква η. Величина η вычисляется с помощью формулы КПД теплового двигателя:

    $$η={А\over Q1}$$

    Поскольку $ А =Q1 - Q2$, тогда

    $η ={1 - Q2\over Q1}$

    Поскольку у всех двигателей часть тепла отдается холодильнику, то всегда η < 1 (меньше 100 процентов).

    Максимально возможный КПД идеального теплового двигателя

    В качестве идеальной тепловой машины Сади Карно предложил машину с идеальным газом в качестве рабочего тела. Идеальная модель Карно работает по циклу (цикл Карно), состоящему из двух изотерм и двух адиабат.

    Рис. 2. Цикл Карно:.

    Напомним:

    • Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0) ;
    • Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q = A).

    Сади Карно доказал, что максимально возможный КПД, который может быть достигнут идеальным тепловым двигателем, определяется с помощью следующей формулы:

    $$ηmax=1-{T2\over T1}$$

    Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

    Какие реальные КПД у разных типов двигателей

    Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

    Рис. 3. КПД реальных тепловых двигателей:.

    Что мы узнали?

    Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T 1 и холодильника Т 2 , тем больше КПД.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.2 . Всего получено оценок: 293.

    КПД теплового двигателя. Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

    где - теплота, полученная от нагревателя, - теплота, отданная холодильнику.

    Коэффициентом полезного действия теплового двигателя называют отношение работы совершаемой двигателем, к количеству теплоты полученному от нагревателя:

    Так как у всех двигателей некоторое количество теплоты передается холодильнику, то во всех случаях

    Максимальное значение КПД тепловых двигателей. Французский инженер и ученый Сади Карно (1796 1832) в труде «Размышление о движущей силе огня» (1824) поставил цель: выяснить, при каких условиях работа теплового двигателя будет наиболее эффективной, т. е. при каких условиях двигатель будет иметь максимальный КПД.

    Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он вычислил КПД этой машины, работающей с нагревателем температуры и холодильником температуры

    Главное значение этой формулы состоит в том, как доказал Карно, опираясь на второй закон термодинамики, что любая реальная тепловая машина, работающая с нагревателем температуры и холодильником температуры не может иметь коэффициент полезного действия, превышающий КПД идеальной тепловой машины.

    Формула (4.18) дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю,

    Но температура холодильника практически не может быть намного ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

    Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими. Так, для паровой турбины начальные и конечные температуры пара примерно таковы: При этих температурах максимальное значение КПД равно:

    Действительное же значение КПД из-за различного рода энергетических потерь равно:

    Повышение КПД тепловых двигателей, приближение его к максимально возможному - важнейшая техническая задача.

    Тепловые двигатели и охрана природы. Повсеместное применение тепловых двигателей с целью получения удобной для использования энергии в наибольшей степени, по сравнению со

    всеми другими видами производственных процессов, связано с воздействием на окружающую среду.

    Согласно второму закону термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле. Сейчас потребляемая мощность составляет около 1010 кВт. Когда эта мощность достигнет то средняя температура повысится заметным образом (примерно на один градус). Дальнейшее повышение температуры может создать угрозу таяния ледников и катастрофического повышения уровня мирового океана.

    Но этим далеко не исчерпываются негативные последствия применения тепловых двигателей. Топки тепловых электростанций, двигатели внутреннего сгорания автомобилей и т. д. непрерывно выбрасывают в атмосферу вредные для растений, животных и человека вещества: сернистые соединения (при сгорании каменного угля), оксиды азота, углеводороды, оксид углерода (СО) и др. Особую опасность в этом отношении представляют автомобили, число которых угрожающе растет, а очистка отработанных газов затруднена. На атомных электростанциях встает проблема захоронения опасных радиоактивных отходов.

    Кроме того, применение паровых турбин на электростанциях требует больших площадей под пруды для охлаждения отработанного пара С увеличением мощностей электростанций резко возрастает потребность в воде. В 1980 г. в нашей стране для этих целей требовалось около воды, т. е. около 35% водоснабжения всех отраслей хозяйства.

    Все это ставит ряд серьезных проблем перед обществом. Наряду с важнейшей задачей повышения КПД тепловых двигателей требуется проводить ряд мероприятий по охране окружающей среды. Необходимо повышать эффективность сооружений, препятствующих выбросу в атмосферу вредных веществ; добиваться более полного сгорания топлива в автомобильных двигателях. Уже сейчас не допускаются к эксплуатации автомобили с повышенным содержанием СО в отработанных газах. Обсуждается возможность создания электромобилей, способных конкурировать с обычными, и возможность применения горючего без вредных веществ в отработанных газах, например в двигателях, работающих на смеси водорода с кислородом.

    Целесообразно для экономии площади и водных ресурсов сооружать целые комплексы электростанций, в первую очередь атомных, с замкнутым циклом водоснабжения.

    Другое направление прилагаемых усилий - это увеличение эффективности использования энергии, борьба за ее экономию.

    Решение перечисленных выше проблем жизненно важно для человечества. И эти проблемы с максимальным успехом могут

    быть решены в социалистическом обществе с плановым развитием экономики в масштабах страны. Но организация охраны окружающей среды требует усилий в масштабе земного шара.

    1. Какие процессы называются необратимыми? 2. Назовите наиболее типичные необратимые процессы. 3. Приведите примеры необратимых процессов, не упомянутых в тексте. 4. Сформулируйте второй закон термодинамики. 5. Если бы реки потекли вспять, означало бы это нарушение закона сохранения энергии? 6. Какое устройство называют тепловым двигателем? 7. Какова роль нагревателя, холодильника и рабочего тела теплового двигателя? 8. Почему в тепловых двигателях нельзя использовать в качестве источника энергии внутреннюю энергию океана? 9. Что называется коэффициентом полезного действия теплового двигателя?

    10. Чему равно максимально возможное значение коэффициента полезного действия теплового двигателя?