Снижение емкости аккумулятора. Почему аккумулятор теряет емкость? Коррозия и осыпание активного вещества

Емкость аккумулятора и аккумуляторной батареи


Емкостью аккумулятора называют количество электричества, выраженное в ампер-часах, которое отдает полностью заряженный аккумулятор при непрерывном разряде постоянной силой тока до определенного конечного напряжения. По ГОСТ 959.0-71 номинальная емкость С20 стартерных батарей гарантируется при непрерывном 20-часовом разряде батареи силой тока, равной 0,05Сзо, до напряжения 1,75 В на отстающем аккумуляторе, средней температуре электролита 25 °С и его начальной плотности 1,285 г/см.

Для определения емкости батареи ее сначала полностью заряжают силой тока I - 0,1 С20 и доводят плотность электролита до 1,285 г/см3, а затем разряжают силой тока I = 0,05 С20 до тех пор, пока на одном из отстающих аккумуляторов напряжение не понизится до 1,75 В.

При стартерном режиме разряда батарею разряжают силой тока 1 - 3 С20. Если начальная температура электролита была +25 °С, разряд батареи прерывают, когда на одном из аккумуляторов напряжение понизится до 1,5 В; при начальной температуре электролита -18 °С эта величина должна составлять 1В.



Емкость батареи при 20-часовом режиме разряда больше емкости при Ю-часовом режиме разряда в 1,13 - 1,14 раза.

Емкость батареи при последовательном соединении одинаковых по емкости аккумуляторов равна емкости одного аккумулятора, а э. д. с. батареи равна сумме э. д. с. аккумуляторов, входящих в батарею.

При параллельном соединении аккумуляторов в батарею ее емкость равна сумме емкостей всех аккумуляторов, а э. д. с. батареи равна э. д. с. одного аккумулятора.

В практике обычно параллельно соединяют 12-вольтные батареи с целью увеличения емкости для пуска двигателя стартером, потребляющим большую силу тока.

При эксплуатации батарей разрядная емкость аккумуляторов зависит от следующих основных факторов: массы и пористости активной массы положительных и отрицательных пластин; силы разрядного тока; температуры электролита; плотности электролита; химической чистоты серной кислоты, воды и материалов, из которых изготовлены решетки и активная масса пластин; чистоты поверхности крышек аккумуляторов батареи; длительности работы пластин и др.

Увеличить емкость аккумулятора при одной и той же массе пластин можно путем увеличения количества пластин за счет уменьшения их толщины и увеличения пористости активной массы. При большем количестве пластин, меньшей их толщине и большей пористости активной массы увеличивается площадь соприкосновения активной массы с электролитом, облегчается проникновение электролита в глубокие слои активной массы, а следовательно, увеличивается количество активной массы, участвующей в химических реакциях, что повышает емкость аккумулятора.

Сила разрядного тока оказывает значительное влияние на емкость аккумуляторной батареи. При увеличении силы разрядного тока, особенно при включении стартера, внутри пор активной массы положительных пластин быстро образуется большое количество воды, поэтому плотность электролита в порах значительно снижается. Следовательно, поверхностные слои активной массы пластин будут омываться более плотным электролитом и вследствие более интенсивного участия их в химических процессах разряжаются быстрее, а образующийся при этом сернокислый свинец закупоривает поры активной массы, уменьшая поступление свежего электролита внутрь пластин. Кроме того, кристаллы PbS04 покрывают стенки пор активной массы. Вследствие этого затрудняется использование химической энергии, запасенной во внутренних слоях активной массы пластик, и ее преобразование в электрическую энергию, что приводит к уменьшению разрядной емкости батареи. Этот фактор нужно учитывать при пуске двигателя стартером, особенно в зимнее время.

При 10-часовом режиме разряда работает около 50% активной массы пластин, а при стартерном режиме-не более 15%.

В соответствии с ГОСТ 959.0-71 при непрерывном разряде батареи ЗСТ -80 силой тока / = 0,05 С20, равной 4А, она отдает 80 А ч, т. е. 100% номинальной емкости; при силе тока десятичасового режима, равной 7А, батарея отдает 70 А ч, или 87,5%, а при силе тока / = 3 С20, равной 240 А, она отдает только 20 А ч, или 25% емкости (рис. 8 и 9). Приведенные величины емкости получены при средней температуре электролита +25 °С для батареи с одинарными сепараторами.

С увеличением силы разрядного тока значительно уменьшается плотность электролита в порах активной массы положительных пластин, вследствие чего понижается э.д.с. и напряжение аккумулятора. Кроме того, напряжение понизится в результате увеличения падения напряжения внутри аккумулятора. Из-за быстрого снижения напряжения приходится преждевременно прекращать разряд батареи, и значительная часть разрядной емкости останется неиспользованной.

Во избежание образования крупных труднорастворимых кристаллов сернокислого свинца разряд аккумулятора при 10-часовом режиме разряда прекращают при конечном напряжении 1,7 В; при 20-часовом режиме - 1,75 В, а при стартерном режиме разряда силой тока 3 Сго и начальной температуре электролита + 25 °С - при конечном напряжении 1,5 В и при стартерном режиме разряда силой тока 3С20 и начальной температуре электролита -18 °С - при конечном напряжении 1В.

При двойных сепараторах повышается внутреннее сопротивление батареи, вследствие чего при ее разряде быстрее снижается напряжение до допустимого предела, что вызывает необходимость более раннего прекращения разряда батареи. Применение двойных сепараторов снижает продолжительность стартер-ного разряда примерно на 10%, а следовательно, и емкость батареи уменьшается на 10%.

Большое влияние на разрядную емкость оказывает температура электролита. Номинальная емкость гарантируется при температуре электролита +25 °С.

Рис. 1. Разрядные характеристики аккумулятора емкостью 80 А-ч при различной силе разрядного тока и температуре электролита +25 °С ЗСТ -80 от силы разрядного тока при температуре электролита +25 °С

Рис. 2. Зависимость емкости аккумуляторной батареи

Рис. 3. Зависимость емкости аккумуляторной батареи ЗСТ -80 от температуры электролита при силе разрядного тока 240 А

С понижением температуры увеличивается вязкость электролита, что затрудняет его проникновение в поры глубоких слоев активной массы пластин; при этом поверхностные слои активной массы быстрее преобразуются в PbS04 и кристаллы PbS04 закрывают поры активной массы, а поэтому химическая энергия, запасенная в глубоких слоях активной массы пластин, полностью не используется, а разрядная емкость батареи понижается. При понижении температуры электролита ниже +25 °С емкость аккумуляторной батареи при ее разряде силой тока, соответствующей 0,05. уменьшается на 1% на каждый градус понижения температуры, а при большей силе разрядного тока - на большую величину.

При увеличении температуры электролита с +25 до +45 °С емкость аккумуляторной батареи будет на 10 - 14% выше номинальной. Однако при этом возможно сильное коробление пластин, оползание активной массы и разрушение решеток положительных пластин.

Влияние понижения температуры электролита на емкость аккумуляторной батареи сильно сказывается в зимнее время при пуске двигателя стартером. Так, при разряде батареи ЗСТ -80 силой тока 240 А (3 С20) при температуре электролита +25 °С разрядная емкость батареи раьна 20 А ч, что соответствует приблизительно 25% номинальной, а при той же силе разрядного тока, но при температуре электролита -18 °С, разрядная емкость будет равна 12 А-ч, что составляет около 15% номинальной емкости батареи.

Для получения большей величины разрядной емкости в зимнее время батарею утепляют, особенно со стороны крышек аккумуляторов, так как около 80% тепла излучается от межаккумуляторных перемычек.

Емкость аккумуляторной батареи зависит от срока службы аккумуляторов. В начале эксплуатации емкость новой батареи возрастает вследствие увеличения количества активной массы пластин, преобразующейся в перекись свинца и губчатый свинец (активная масса «разрабатывается»), но при длительной эксплуатации емкость батареи снижается из-за выпадения активной массы или ее отслаивания от решеток пластин, образования крупнокристаллического сернокислого свинца, уплотнения активной массы отрицательных пластин и по другим причинам.

К атегория: - Электрооборудование автомобилей

Если взять объем электрической энергии, полученной при разряде аккумуляторной батареи до определенного значения, то эта величина будет назваться номинальной или зарядной емкостью АКБ. Она учитывается при и другим характеристикам. Иными словами, чтобы определить емкостные характеристики, нужно засечь время работы аккумулятора до тех пор, пока он не сядет, скажем, до 6 Вольт. Измеряется данный параметр в Ампер-часах.

Зависимость разрядной емкости батареи от огромного количества факторов очевидна. Так, она может варьироваться, в зависимости от конструктивных особенностей, технологии изготовления, условий эксплуатации АКБ. Среди самых значимых конструктивных нюансов этого типа можно назвать следующие категории:

  • количество имеющейся активной массы;
  • объем электролита, залитого в АКБ;
  • толщина пластин;
  • геометрические размеры электродов.

Пожалуй, основными среди технологических параметров, оказывающих влияние на емкостные характеристики батареи, можно назвать состав активных материалов и рецептуру их приготовления, а также степень их пористости.

Что касается эксплуатационных параметров, влияющих на разрядную емкость, то здесь необходимо отметить температуру электролита, а также силу разрядного тока.

От теории к практике

Перейдем к конкретным параметрам, от которых зависит емкость и их подробному описанию:

Величина электродов

Чем тоньше пластины, тем более равномерной является нагрузка на все слои активной массы. Это позитивно сказывается на разрядной емкости. Толстые электроды - напротив, не дают использовать внутренние слои активной массы максимально эффективно.

Плотность активной массы

Чем меньше данный параметр, тем больше степень пористости, благодаря чему существенно улучшается диффузия электролита, направленная вглубь активной массы пластины. Таким образом, увеличивается и истинная поверхность, необходимая для протекания реакции образования тока а, соответственно, и разрядная емкость.

Материал сепаратора

Наличие большого количества пор вместе с увеличением высоты его ребер способствует повышению запаса электролита, находящегося в межэлектродном зазоре. Таким образом, улучшается и условия его диффузии.

Плотность электролита

Чем больше в растворе серной кислоты, тем выше емкость положительных электродов. Емкость же отрицательных пластин - напротив, снижается за счет ускорения процесса пассивации поверхности. Следует отметить, что слишком высокая плотность - также не очень хороша. Из-за повышенной концентрации серной кислоты уменьшается антикоррозийная устойчивость металла.

Разрядный ток

Для того чтобы добиться более высокой емкости АКБ, нужно использовать разрядные токи меньшей мощности. Кстати, используя , не злоупотребляйте ускоренным режимом. Несмотря на то, что заряд достигается быстро, он так же быстро и расходуется при запуске авто.

Температура электролита

Чем ниже температурные показатели раствора серной кислоты и дистиллированной воды, тем ниже емкость батареи. Это обусловлено тем, что при увеличении вязкости электролита повышается и электрическое сопротивление, а это, в свою очередь, приводит к замедлению диффузии.

Наверное, каждый автолюбитель хотя бы раз сталкивался с ситуацией, когда по каким-то причинам отказывалась работать. Это серьезная проблема, если необходимо срочно куда-то ехать. Многие пойдут и приобретут новую АКБ. Но, зная, в домашних условиях, можно не только восстановить батарею, но и продлить срок ее эксплуатации еще на несколько лет.

Как устроены аккумуляторы, принцип работы

АКБ представляет собой герметичную пластиковую емкость, внутри которой установлены отрицательные и положительные свинцовые пластины. В современных моделях пластины могут быть не только из свинца, но и никелевых, кадмиевых и других сплавов.

Внутри также находится серная кислота - благодаря ей образуется гальваническая пара.

Когда к клеммам батареи будет подан ток, начнется накопление энергии. Когда предел емкости будет достигнут, АКБ превратится в источник энергии с напряжением в 12 В.

Каждый раз, когда автовладелец заводит свое авто, аккумулятор теряет часть энергии. Но как только двигатель запустится, генератор должен восполнить запасы энергии. Но это только в идеальном случае. Поэтому иногда до предела, а как реанимировать аккумулятор, автолюбитель, особенно начинающий, не всегда знает. Причин, по которым АКБ выходит из строя, много. Статистика говорит, что большое количество батарей выходит из строя вследствие сульфатации и осыпания намазки.

Сульфатация - одна из причин выхода АКБ из строя

Итак, типичный аккумулятор - это пластины из свинца в серной кислоте. Данный металл легко разрушается воздействием слабых кислот, к примеру, уксусной. А вот серная для него совсем не опасна, даже если она будет очень концентрированной или нагретой. Пленка, которая образуется в результате реакции серной кислоты и свинца, защищает металл от разрушения.

Аккумуляторная батарея - это источник электричества химического типа. Если АКБ заряжена, то серная кислота - в электролите. При разряженной батарее она находится на электродах в виде сульфата. Операция обратима при заряде и это нормальный процесс.

Если оставить батарею надолго разряженной, то сульфаты свинца начнут растворяться, и в результате они начнут образовываться на электродах в виде больших нерастворимых кристаллов.

Слой сульфатов - изолятор. В результате теряется часть емкости батареи, а если АКБ долго находилась в состоянии разряда, то она погибнет.

Диагностировать сульфатацию очень просто - быстро теряется емкость АКБ, недостаточно мощности для запуска двигателя, закипает электролит и перегреваются пластины. Также наблюдается более высокое напряжение на клеммах.

Кальциевые сульфаты

В современных аккумуляторах свинец легируется кальцием. Это позволяет свести практически к минимуму выкипание воды и снизить саморазряд. Однако если батарея разрядилась достаточно сильно, то электроды покрываются Зарядить этот АКБ полностью уже не получится. Из-за того, что увеличивается такой батареи, считается, что ее нужно заряжать напряжениями от 15 В. Это ошибка. Нужно точно знать, как реанимировать аккумулятор, иначе можно его убить вовсе.

Осыпание угольных пластин

Это также довольно распространенная причина, по которой выходят из строя АКБ. Диагноз поставить легко - серная кислота потемнеет. В этом случае есть риск смерти батареи - к сожалению, такая задача, как реанимировать автомобильный аккумулятор, в данном случае не решаема.

Свинцовые АКБ в ходе эволюции много раз изменялись и модернизировались.

Однако принцип действия остался все тем же. На пластины нанесена паста окиси свинца. Эта деталь или намазка удерживается на электродах благодаря сцепным свойствам и конструкции пластин. Осыпается она в результате вибраций, сульфатации, колебаний температур. Процесс осыпания вполне естественный. Это говорит о старении аккумулятора. Если обращаться с батареей аккуратно, то срок ее службы существенно увеличится.

Как реанимировать аккумулятор автомобиля

С причинами все понятно. В гарантийных талонах на автомобили на этот случай водитель найдет лишь рекомендацию по замене батареи. Но есть варианты восстановления источника питания.

Как поднять емкость и плотность

Главный способ, который используют для батарей самых разных модификаций, - это зарядка малым током. АКБ быстро заряжается и также разряжается. За короткий период времени источник питания перестает брать заряд. Здесь необходимо сделать паузу, а затем повторить цикл.

Необходимо точно знать, как реанимировать аккумулятор автомобиля - при выборе неверных параметров заряда можно полностью уничтожить АКБ. Так, сила тока должна составлять всего 4-6% от емкости батареи. К примеру, для аккумуляторов на 60 Ач допускается ток заряда не более 3,6 А. Зачастую, время одного такого цикла составляет около 6-8 часов. Пауза - от 8 до 16 ч. Для восстановления может понадобиться 5-6 таких циклов.

Прекратить процедуру можно, если восстановилась а уровень напряжений находится в допустимых для конкретной батареи пределах.

Восстанавливающие процедуры в домашних условиях

Этот вариант подойдет тем, кто не имеет времени. Опытные автолюбители используют его уже давно. Если кто не знал, как реанимировать аккумулятор, то этот метод предусматривает растворение сульфатов посредством промывки специальными растворами.

Первым делом батарея заряжается на максимум своих возможностей. Далее - сливается электролит, а внутренности промываются дистиллированной водой 2-3 раза. Затем в полость заливают и трилона Б и оставляют батарею на час. Когда реакция закончится, то будет видно. Прекратится выделение газов. Затем следует повторить процесс, если пластины очистились недостаточно. После всего батарею снова промывают, заливают электролит и заряжают стандартным способом.

Как реанимировать старый аккумулятор автомобиля

Производители АКБ рекомендуют по окончании срока старые батареи выбрасывать. Не стоит с этим спешить - есть возможность оживить их. Сегодня во многих городах есть компании по скупке старых аккумуляторов - они их реанимируют и затем продают по приемлемой стоимости.

Если в гараже лежит один такой, можно попробовать вернуть ему былые возможности. Следует только знать, как реанимировать старый аккумулятор, чтобы все получилось. Ведь даже китайская батарея обойдется не менее 2000 р., а это какие-никакие, но все-таки деньги и их можно сэкономить.

Приступаем к процессу

Первым делом следует определить неисправности. Черный электролит - это разрушенные угольные пластины. Упала емкость - сульфатация. Также возможно замыкание пластин, но о том, как реанимировать аккумулятор с такой проблемой - расскажем ниже. Тяжелый случай - вздутые бока батареи. Здесь только замена.

Как лечить замыкание пластин

Для ликвидации этой проблемы поможет специальная присадка.

Она добавляется в электролит, плотность которого составляет 1,28 г/куб см, и оставляется там на двое суток. После этого смесь заливают в батарею и измеряют плотность. Если показатель остался на том же уровне, то ее заряжают и разряжают. Если в процессе не наблюдается нагревания или кипения, то ток можно уменьшить в два раза.

Через два часа снова измеряют плотность электролита. Если она снова в норме, зарядку прекращают. Можно считать, что батарея восстановлена. Если плотность выросла, доливают воду. Когда снизилась, то серную кислоту. После этого снова проводят зарядку.

Ремонт замыканий: способ №2

Чтобы устранить замыкание, проблемную зону выжигают большими токами. Для этого достаточно подключать батарею к сварочному аппарату с Ток должен быть от 100 А. Цепь замыкают лишь на пару секунд.

О необслуживаемых АКБ

Производители сделали эти батареи, чтобы их просто меняли.

О том, как реанимировать необслуживаемый аккумулятор, в инструкциях к ним не пишут. Но способ все-таки есть.

Первым делом сливают электролит, а заменяют его дистиллированной водой. Далее батарею заряжают на постоянном напряжении в 14 В. Через несколько часов следует слушать, что происходит внутри АКБ. Процесс должен сопровождаться образованием газов. При интенсивном выделении ток уменьшают.

За две недели батарея превратит воду в электролит, а сульфат свинца преобразуется в серную кислоту.

Через две недели содержимое сливается и снова заливается вода, и снова повторяется этот процесс. Когда десульфатация полностью закончится, можно заливать нормальный электролит и заряжать аккумулятор со стандартными параметрами.

Как правильно реанимировать аккумулятор, современный производитель не рассказывает. Все эти способы автолюбители применяют сами, на свой страх и риск. Главное, в точности соблюдать эти рекомендации, и тогда есть шанс, что АКБ оживет и будет радовать своего владельца еще долгие годы.

Итак, мы выяснили, как реанимировать необслуживаемый аккумулятор автомобиля.

Как и для любого мобильного устройства, для iPhone и iPad очень важна автономность. С каждым годом запросы пользователей растут, сценарии использования расширяются, а возможности батарей в мобильных гаджетах остаются на прежнем уровне из-за постоянно уменьшающихся толщины и веса .

Жалобы на недостаточное время автономной работы можно услышать от многих пользователей, но как же понять, нуждается ли батарея вашего аппарата в замене или вы просто слишком активно его используете? Об этом и пойдет речь дальше.

Разряжается или нет

Это прозвучит банально, но для начала нужно понять, разряжается ли устройство само или его разряжаете вы. Для этого достаточно просто на время воздержаться от активного использования и понаблюдать за уровнем заряда. Лучше всего полностью зарядить аппарат и оставить на ночь, предварительно сделав скриншот с уровнем заряда на текущее время. Не забудьте также отключить уведомления, чтобы исключить возможность разряда из-за множества пушей.

Утром проверьте уровень заряда. Если он не изменился или упал на пару-тройку процентов - значит с батареей всё нормально и ускоренный разряд вызван активным использованием. Если же заряд упал более чем на 10% - что-то всё-таки её разряжает. В этом случае переходим к следующему пункту.

Определяем причину разряда

Нам нужно определить, куда уходит заряд: «отъедают» ли его фоновые процессы и службы или же разрядка вызвана уменьшением ёмкости батареи вследствие износа. Это довольно просто сделать через встроенную функцию статистики использования аккумулятора. Начиная с iOS 7.0, у нас есть не только скупые цифры использования и ожидания (хотя, достаточно и их), а даже детальная статистика по приложениям.

Суть заключается в том, что в режиме ожидания iPhone и iPad не должны разряжаться, а значит время ожидания из меню статистики должно быть значительно больше, чем время использования (при том что устройство находится в состоянии покоя).

Если у вас время ожидания равно или почти равно времени использования - значит имеет место фоновая активность приложений или сервисов, которая и является причиной разряда. Стоит проверить приложения из списка и их доступ к обновлению контента, геолокации и прочему. А вот ещё несколько полезных советов для вас.

Если же всё в порядке, а батарея всё равно держит очень мало даже при щадящем использовании - переходим к следующему пункту.

Тестируем аккумулятор

Почти наверняка проблема заключается в износе аккумулятора, который неизбежен при длительной эксплуатации. В процессе заряда-разряда ёмкость батареи уменьшается. В iPhone она падает до 80% после 500 циклов перезаряда, iPad выдерживает вдвое больше - 1000. Узнайте, насколько снизилась максимальная ёмкость аккумулятора на вашем аппарате. Если падение слишком большое и текущая автономность вас не устраивает, батарею пора менять.

Если ваше устройство обновилось до iOS 11.3, то вы сможете узнать, насколько уменьшилась ёмкость его аккумулятора за всё время эксплуатации, без дополнительных программ. Для этого откройте раздел «Настройки» → «Аккумулятор» → «Состояние аккумулятора». Устройство покажет текущее значение максимальной ёмкости в процентах от исходного.


Если на вашем устройстве установлена более старая версия iOS, вы можете узнать состояние аккумулятора с помощью бесплатного приложения Battery Life Doctor. Запустите его и нажмите Details возле пункта Battery Raw Data — в следующем меню увидите параметр Design Capacity (исходная максимальная ёмкость). Рядом с ним будет отображаться текущая максимальная ёмкость батареи в процентах от исходной.


Ещё один способ узнать состояние аккумулятора — в программе iBackupbot для macOS и Windows.

Загружаем программу по ссылке , открываем, подключаем аппарат к компьютеру и кликаем More Information. Нас интересуют показатели DesignCapacity (исходная максимальная ёмкость) и FullChargeCapacity (текущая максимальная ёмкость). Остаётся посчитать разницу самостоятельно. Если она окажется слишком большой, подумайте над заменой батареи.

Что делать дальше

75–80% от заводской ёмкости это ещё не смертельно и с этим спокойно можно жить дальше, но если для вашего сценария использования такая автономность не годится, то придется заменить аккумулятор.

Делать это лучше в официальных или внушающих доверие сервисах. Если решите провести замену самостоятельно, то не покупайте подозрительно дешёвые аккумуляторы и имейте в виду, что в отличие от iPhone 4/4s в более поздних девайсах (и всех iPad) процедура замены предполагает полную разборку устройства, что требует соответствующих навыков.

И ещё. Перед тем, как отправляться в сервисный центр, попробуйте откалибровать батарею . Многим помогает, а попытка - не пытка.

Март 2016

Как известно, работа свинцово-кислотной аккумуляторной батареи основана на возникновении разности потенциалов между двумя электродами, погруженными в электролит. Активное вещество отрицательного катода – чистый свинец, а положительного анода – двуокись свинца. В системах резервного и автономного питания могут применяться аккумуляторы, изготовленные по разным технологиям: обслуживаемые наливные, герметичные гелевые или AGM. Вне зависимости от технологии, химические процессы, протекающие в свинцово-кислотных аккумуляторах, схожи:

  • При разряде через пластины проходит электрический ток, и пластины покрываются серным окислом (сульфатом) свинца. Сульфат свинца оседает на пластинах в виде пористого налета.
  • При заряде идет обратная реакция восстановления активного вещества, на отрицательных пластинах накапливается чистый свинец, а на положительных – пористая масса окиси свинца.
К сожалению, полное восстановление активного вещества в каждом новом цикле разряда-заряда невозможно .

При эксплуатации неизбежно происходит так называемое старение аккумулятора, то есть постепенная потеря емкости – вплоть до допустимого предела эксплуатации, обычно принимаемого по снижению емкости до 60% от исходной.

В идеальных условиях реальный срок эксплуатации аккумуляторов в буферном режиме может приближаться к номинальному.

Процесс старения аккумулятора может значительно ускориться в силу действия следующих разрушающих процессов:

  • Сульфатация пластин;
  • Коррозия пластин и осыпание активной массы;
  • Испарение электролита или так называемое «высыхание» аккумулятора;
  • Стратификация электролита (характерно только для наливных АКБ).

Сульфатация пластин

Когда аккумулятор разряжен, рыхлая активная масса превращается в твердые микрокристаллы сульфата свинца. Если зарядку аккумулятора не производить длительное время, микрокристаллы укрупняются, налет уплотняется и перекрывает доступ электролита к пластинам, что делает зарядку аккумулятора невозможной.

Факторы, повышающие риск сульфатации:

  • длительное хранение в разряженном состоянии;
  • хронический недозаряд аккумулятора в циклическом режиме (необходим 100% заряд не реже чем раз в месяц);
  • экстремально глубокий разряд аккумулятора.

Сульфатация пластин может быть частично устранена специальными режимами заряда АКБ.

Коррозия и осыпание активного вещества

При коррозии чистый свинец решетки пластин, взаимодействуя с водой, окисляется в окись свинца. Окись свинца хуже проводит электроток к активному веществу намазки пластин, повышает внутреннее сопротивление и уменьшает стойкость аккумулятора к высоким токам разряда.

На положительных пластинах коррозия ослабляет сцепление решетки с активным веществом. Кроме того, само активное вещество положительной пластины постепенно теряет прочность. При каждом цикле намазной слой пластины меняет состояние из объемной массы микрокристаллов окиси свинца в жесткую кристаллическую структуру сульфата свинца. Чередование сжатия и расширения снижает физическую прочность намазного слоя, что в сочетании с ослаблением сцепления приводит к сползанию и осыпанию активного вещества на дно аккумулятора.

Коррозия и накопление отслоившегося активного вещества могут приводить к деформации пластин аккумулятора и, при наихудшем развитии событий, к их замыканию.

Факторы, повышающие риск коррозии и осыпания активной массы:

  • заряд слишком высоким напряжением;
  • заряд недостаточным током – то есть долгое нахождение под высоким напряжением в фазе наполнения;
  • слишком долгое нахождение в фазе абсорбции («перезаряд»);
  • заряд аккумулятора слишком большим током;
  • ускоренный разряд аккумулятора слишком большим током.

Осыпание (сползание) активной массы электролита – необратимое явление. Самое опасное последствие сползания активной массы – замыкание пластин.

Испарение электролита

При разряде на положительной пластине аккумулятора из воды образуется кислород. В нормальных условиях поддерживающего заряда кислород рекомбинирует на отрицательной пластине аккумулятора с водородом, восстанавливая исходное количество воды в электролите. Но диффузия кислорода в сепараторе затруднена, поэтому процесс рекомбинации не может быть 100% эффективным. Снижение доли воды изменяет зарядные характеристики аккумулятора и при определенном пороге делает заряд полностью невозможным.

Факторы, повышающие риск «высыхания аккумулятора»:

  • эксплуатация при высокой температуре окружающей среды;
  • заряд слишком большим током или напряжением;
  • слишком высокое напряжение поддерживающего заряда - «перезаряд» аккумулятора.

Испарение электролита – необратимое явление для гелевых и AGM аккумуляторов. Основная причина высыхания, особенно для AGM – «перезаряд» аккумуляторов.

Терморазгон и термический пробой аккумуляторов

Старение аккумулятора в силу перечисленных выше процессов происходит ускоренными темпами, однако все же достаточно медленно и часто незаметно.

Рекомбинация газов в герметичной батарее – это химический процесс с выделением тепла. Когда рекомбинация идет при правильных значениях напряжения и тока заряда, нагрев не создает проблем. Однако, когда батарея перезаряжена , внутренняя температура повышается быстрее, чем батарея может быть охлаждена снаружи. Повышение температуры уменьшает зарядное напряжение, что в стадии абсорбции приводит к одновременному увеличению тока. Это в свою очередь вновь повышает температуру.

Запускается самоподдерживающийся цикл увеличения тока и тепловыделения, приводящий, при худшем развитии ситуации, к деформации решеток и внутреннему короткому замыканию с необратимым разрушением аккумулятора.

Факторы, повышающие риск появления эффекта терморазгона:

  • прерывистый или «пульсирующий» заряд из-за нестабильного внешнего источника энергии или некачественного зарядного устройства;
  • слишком долгое нахождение в фазе абсорбции – «перезаряд»;
  • плохой теплоотвод или повышенная температура окружающей среды.

Специфика разрушающих процессов в цепочке АКБ

Нетрудно заметить, что при заряде отдельного аккумулятора все факторы риска устранимы обеспечением правильных условий эксплуатации и зарядного алгоритма. Однако в системах резервного энергоснабжения редко используется менее двух аккумуляторов. При параллельно-последовательном соединении зарядное устройство «видит» значения зарядного тока и напряжения только на оконечных клеммах, поэтому на отдельных аккумуляторах напряжения могут серьезно отличаться от рекомендуемых значений. Аккумулятор, имеющий более высокий уровень саморазряда (больший ток утечки), может вызывать перезаряд последовательно соединенных с ним элементов и неполный заряд параллельно соединенных с ним элементов . Перезаряд и недозаряд повышают риск проявления практически всех разрушающих процессов. Поэтому для уменьшения опасности все аккумуляторы в цепочке должны иметь одинаковое состояние заряда и максимально близкие значения емкости.

Для новых установок рекомендуется использовать аккумуляторы не только одной марки, но и одной заводской партии. Однако практика показывает, что и в одной партии не бывает даже двух аккумуляторов с точно совпадающими характеристиками емкости, степени заряда и внутренних токов утечки.

Тем более требование одинаковых характеристик недостижимо, когда нужно заменить поврежденный аккумулятор в уже эксплуатируемой батарее.

Незначительный разброс по степени заряженности новых аккумуляторов чаще всего сглаживается в процессе приработки за несколько циклов разряда и заряда. Но при значительном разбросе или различиях характеристик емкости разбаланс между отдельными АКБ массива со временем только возрастает.

Систематические перезаряды аккумуляторов с меньшей емкостью и возможные переполюсовки недозаряженных аккумуляторов при глубоких разрядах приводят к накоплению повреждений и выходу из строя отдельных аккумуляторов. В силу эффекта терморазгона даже один вышедший из строя аккумулятор может уничтожить весь массив батареи.

Активное выравнивание заряда аккумуляторов

Сгладить различия параметров аккумуляторов можно используя специальное устройство, называемое балансир заряда АКБ или нивелир разбаланса.

ВАЖНО! Применение балансиров заряда снижает риск возникновения разрушающих процессов, однако не может исправить уже серьезно поврежденный АКБ.

Физически устройство выравнивания заряда аккумуляторов представляет собой компактный электронный модуль, подключаемый к каждой паре последовательно соединенных элементов:

  • для батареи номиналом 24В требуется один балансир заряда на цепочку (схема1).
  • для батареи номиналом 48В требуется три балансира заряда на цепочку (схема 2).

Электропитание SBB осуществляется от самой батареи или от источника заряда. Собственное энергопотребление SBB мало и соизмеримо с потерями на саморазряд.

Эффективность нивелира SBB2-12-A принципиально выше, чем у других балансиров заряда, работа которых основана либо на шунтировании избыточной зарядной мощности (т.н. пассивные балансиры, создают прямые потери энергии), либо на селективном подзаряде элементов (выравнивание идет только во время заряда). Максимальный ток выравнивания SBB2-12-A – 5А, что превосходит возможности всех представленных на рынке альтернативных устройств.

Эффект применения балансира заряда :

1) Повышение общей надежности и увеличение срока службы аккумуляторов.

2) Увеличение энергоотдачи аккумуляторной батареи, т.к. при глубоких разрядах батарей более полно используется емкость всех аккумуляторов в последовательной цепи.

Балансиры SBB работают постоянно, поддерживая аккумуляторы в равновесном состоянии даже при выключенном зарядном устройстве.

Схема подключения

Схема подключения нивелира (балансира) на батарею 24В и 48В.

Ниже представлены схемы подключения нивелира заряда SBB2-12-A к свинцово-кислотным аккумуляторным аккумуляторам 12В в батареях номиналом 24В и 48В.

Схема 1. Батарея 24В из двух АКБ 12В

Схема 2. Батарея 48В из четырех АКБ 12В

Подключение нивелира (балансира) на батарею из нескольких параллельных цепочек.

Допускается работа одного балансира выравнивания заряда SBB на 2-3 параллельных цепочки аккумуляторов – если разбаланс невелик и нет превышения по максимальному току выравнивания. Отдельная балансировка каждой цепочки дает лучшие результаты за счет селективности корректирующего воздействия .

При использовании одного нивелира на несколько цепочек необходимо применять схему соединения аккумуляторов с шинами постоянного тока и соединением средних точек (Схема 3).

При использовании отдельного нивелира в каждой цепочке можно применять обычную схему соединения аккумуляторов (Схема 4).