Токсические вещества выбрасываемые в атмосферу автомобилями. Загрязняющие вещества от выхлопов газа автомобильного транспорта

Автомобильный транспорт наиболее агрессивен в сравнении с другими видами транспорта по отношению к окружающей среде. Он является мощным источником ее химического (поставляет в окружающую среду громадное коли­чество ядовитых веществ), шумового и механического загрязнения. Следует подчеркнуть, что с увеличением автомобильного парка уровень вредного воз­действия автотранспорта на окружающую среду интенсивно возрастает. Так, если в начале 70-х годов ученые-гигиенисты определили долю загрязнений, вносимых в атмосферу автомобильным транспортом, в среднем равной 13%, то в настоящее время она достигла уже 50% и продолжает расти. А для горо­дов и промышленных центров доля автотранспорта в общем объеме загрязне­ний значительно выше и доходит до 70% и более, что создает серьезную эко­логическую проблему, сопровождающую урбанизацию.

В автомобилях имеется несколько источников токсичных веществ, основными из которых являются три:

  • отработавшие газы
  • картерные газы
  • топливные испарения

Рис. Источники образования токсичных выбросов

Наибольшая доля химического загрязнения окружающей среды авто­мобильным транспортом приходится на отработавшие газы двигателей внут­реннего сгорания.

Теоретически предполагается, что при полном сгорании топлива в ре­зультате взаимодействия углерода и водорода (входят в состав топлива) с кислородом воздуха образуется углекислый газ и водяной пар. Реакции окис­ления при этом имеют вид:

С+О2=СО2,
2Н2+О2=2Н2.

Практически же вследствие физико-механических процессов в цилинд­рах двигателя действительный состав отработавших газов очень сложный и включает более 200 компонентов, значительная часть которых токсична.

Таблица. Ориентировочный состав отработавших газов автомобильных двигателей

Компоненты

Размерность

Пределы концентраций компонентов

Бензиновый, с искр. зажигание

Дизельный

Бензиновые

Дизельные

Кислород, O2

Пары воды, Н2О

0,5…10,0

Двуокид углерода, СО2

Углеводороды, СН (суммарно)

Оксид углерода, СО

Оксид азота, NOx

Альдегиды

Оксиды серы (сумм.)

Бенз(а)пирен

Соединения свинца

Состав отработавших газов двигателей на примере легковых автомобилей без их нейтрализации можно представить в виде диаграммы.

Рис. Составные части отработавших газов без применения нейтрализации

Как видно из таблицы и рисунка, состав отработавших газов рассматриваемых типов двигателей существенно различается прежде всего по концентрации продуктов неполного сгорания – оксида углерода, углеводородов, оксидов азота и сажи.

К токсичным компонентам отработавших газов относятся:

  • оксид углеро­да
  • углеводороды
  • оксиды азота
  • оксиды серы
  • альдегиды
  • бенз(а)пирен
  • со­единения свинца

Различие в составе отработавших газов бензиновых и дизельных двигателей объясняется большим коэффициентом избытка воз­духа α (отношение действительного количества воздуха, поступающего в ци­линдры двигателя, к количеству воздуха, теоретически необходимому для сго­рания 1 кг топлива) у дизельных двигателей и лучшим распыливанием топли­ва (впрыск топлива). Кроме того, у бензинового карбюраторного двигателя смесь для раз­личных цилиндров неодинакова: для цилиндров, расположенных ближе к кар­бюратору, – богатая, а для удаленных от него – беднее, что является недо­статком бензиновых карбюраторных двигателей. Часть топливовоздушной смеси у карбю­раторных двигателей поступает в цилиндры не в парообразном состоянии, а в виде пленки, что также увеличивает содержание токсичных веществ вслед­ствие плохого сгорания топлива. Этот недостаток не характерен для бензино­вых двигателей с впрыском топлива, так как подача топлива осуществляется непосредственно к впускным клапанам.

Причиной образования оксида углерода и частично углеводородов явля­ется неполное сгорание углерода (массовая доля которого в бензинах дости­гает 85%) из-за недостаточного количества кислорода. Поэтому концентрации оксида углерода и углеводородов в отработавших газах возрастают при обога­щении смеси (α 1, вероятность указанных превращений во фронте пламени мала и в отработавших газах содержится меньше СО, но в цилиндрах находятся дополнительные источники его появления:

  • низкотемпературные участки пламени стадии воспламенения топлива
  • капли топлива, поступающие в камеру на поздних стадиях впрыска и сгорающие в диффузионном пламени при недостатке кислорода
  • частицы сажи, образовавшейся в период распространения турбулент­ного пламени по гетерогенному заряду, в котором, при общем избытке кисло­рода могут создаваться зоны с его дефицитом и осуществляться реакции типа:

2С+О2 → 2СО.

Диоксид углерода СО2 является не токсичным, но вредным веществом в связи с фиксируемым повышением его концентрации в атмосфере планеты и его влиянием на изменение климата. Основная доля образовавшихся в ка­мере сгорания СО окисляется до СО2, не выходя за пределы камеры, ибо за­меренная объемная доля диоксида углерода в отработавших газах составля­ет 10-15%, т. е. в 300…450 раз больше, чем в атмосферном воздухе. Наиболь­ший вклад в образование СО2 вносит необратимая реакция:

СО + ОН → СО2 + Н

Окисление СО в СО2 происходит в выпускной трубе, а также в нейтра­лизаторах отработавших газов, которые устанавливаются на современных автомобилях для принудительного окисления СО и несгоревших углеводородов до СО2 в связи с необходимостью выполнения норм ток­сичности.

Углеводороды

Углеводороды – многочисленные соединения различного типа (например, C6H6 или C8H18) состоят из исходных или распав­шихся молекул топлива, и их содержание увеличивается не только при обога­щении, но и при обеднении смеси (а > 1,15), что объясняется повышенным количеством непрореагировавшего (несгоревшего) топлива из-за избытка воздуха и пропусков воспламенения в отдельных цилиндрах. Образование угле­водородов происходит также из-за того, что у стенок камеры сгорания темпе­ратура газов недостаточно высока для сгорания топлива, поэтому здесь пла­мя гасится и полного сгорания не происходит. Наиболее токсичны полициклические ароматические углеводороды.

В дизельных двигателях легкие газообразные углеводороды образуются при термическом распаде топ­лива в зоне срыва пламени, в ядре и в переднем фронте факела, на стенке на стенках камеры сгорания и в результате вторичного впрыскивания (подвпрыскивания).

Твердые частицы включают нерастворимые (твердый углерод, оксиды металлов, диоксид кремния, сульфаты, нитраты, асфальты, соединения свин­ца) и растворимые в органическом растворителе (смолы, фенолы, альдегиды, лак, нагар, тяжелые фракции, содержащиеся в топливе и масле) вещества.

Твердые частицы в отработавших газах дизелей с наддувом состоят на 68…75% из нерастворимых веществ, на 25…32% – из растворимых.

Сажа

Сажа (твердый углерод) является основным компонентом нераствори­мых твердых частиц. Образуется при объемном пиролизе (термическом раз­ложении углеводородов в газовой или паровой фазе при недостатке кислоро­да). Механизм образования сажи включает несколько стадий:

  • образование зародышей
  • рост зародышей до первичных частиц (шестиугольных пластинок гра­фита)
  • увеличение размеров частиц (коагуляция) до сложных образований–конгломератов, включающих 100… 150 атомов углерода
  • выгорание

Выделение сажи из пламени происходит при α = 0,33…0,70. В от­регулированных двигателях с внешним смесеобразованием и искровым зажи­ганием (бензиновых, газовых) вероятность появления таких зон незначитель­на. У дизелей локальные переобогащенные топливом зоны образуются чаще и в полной мере реализуются перечисленные процессы сажеобразования. Поэтому выбросы сажи с отработавшими газами у дизелей больше, чем, у дви­гателей с искровым зажиганием. Образование сажи зависит от свойств топли­ва: чем больше отношение С/Н в топливе, тем выход сажи выше.

В состав твердых частиц кроме сажи входят соединения серы, свинца. Оксиды азота NOx представляют набор следующих соединений: N2О, NO, N2О3, NО2, N2О4 и N2O5. В отработавших газах автомобильных двигателей преобла­дает NO (99% в бензиновых двигателях и более 90% в дизелях). В камере сгорания N0 может образовываться:

  • при высокотемпературном окислении азота воздуха (термический NО)
  • в результате низкотемпературного окисления азотсодержащих соеди­нений топлива (топливный NO)
  • из-за столкновения углеводородных радикалов с молекулами азота в зоне реакций горения при наличии пульсации температуры (быстрый NO)

В камерах сгорания доминирует термический NO, образующийся из мо­лекулярного азота во время горения бедной топливовоздушной смеси и сме­си, близкой к стехиометрической, за фронтом пламени в зоне продуктов сго­рания. Преимущественно при сгорании бедных и умеренно богатых смесей (α > 0,8) реакции происходят по цепному механизму:

О + N2 → NO + N
N + О2 → NO+О
N+OH → NO+H.

В богатых смесях (а < 0,8) осуществляются также реакции:

N2 + ОН → NO + NH
NH + О → NО + ОН.

В бедных смесях выход NО определяется максимальной температурой цепочно-теплового взрыва (максимальная температура 2800…2900° К), т. е. кинетикой образования. В богатых смесях выход NО перестает зависеть от максимальной температуры взрыва и определяется кинетикой разложения и содержание NО уменьшается. При горении бедных смесей значительно вли­яние на образование NО оказывает неравномерность температурного поля в зоне продуктов сгорания и присутствие паров воды, которая в цепной реак­ции окисления NOx является ингибитором.

Высокая интенсивность процесса нагревания, а затем охлаждения смеси газов в цилиндре ДВС приводит к образованию существенно неравновесных концентраций реагирующих веществ. Происходит замораживание (закалка) образовавшегося NО на уровне максимальной концентрации, кото­рый обнаруживается в отработавших газах из-за резкого замедления скорости разложения NО.

Основными соединениями свинца в отработавших газах автомобилей являются хлориды и бромиды, а также (в меньших количествах) оксиды, суль­фаты, фториды, фосфаты и некоторые их промежуточные соединения, которые при температуре ниже 370°С находятся в виде аэрозолей или твердых частиц. Около 50% свинца остается в виде нагара на деталях двигателя и в выхлопной трубе, остаток уходит в атмосферу с отработавшими газами.

Большое количество соединений свинца выбрасывается в воздух при использовании этого металла в качестве антидетонатора. В настоящее время соединения свинца в качестве антидетонаторов не применяются.

Оксиды серы

Оксиды серы образуются при сгорании серы, содержащейся в топливе по механизму схожему с образованием СО.

Концентрацию токсичных компонентов в отработавших газах оценивают в объемных процентах, миллионных долях по объему – млн -1, (частей на мил­лион, 10000 ррm = 1% по объему) и реже в миллиграммах на 1 л отработавших газов.

Кроме отработавших газов, источниками загрязнения окружающей среды автомобилями с карбюраторными двигателями являются картерные газы (при отсутствии замкнутой вентиляции картера двигателя, а также испарение топлива из топливной системы.

Давление в картере бензинового двигателя, за исключением такта впуска, значительно меньше, чем в цилиндрах, поэтому часть топливовоздушной смеси и отработавших газов прорывается через неплотности цилиндропоршневой группы из камеры сгорания в картер. Здесь они смешиваются с па­рами масла и топлива, смываемого со стенок цилиндра холодного двигателя. Картерные газы разжижают масло, способствуют конденсации воды, старе­нию и загрязнению масла, повышают его кислотность.

В дизельном двигателе во время такта сжатия в картер прорывается чи­стый воздух, а при сгорании и расширении – отработавшие газы с концентрациями токсичных веществ, пропорциональными их концентрациям в цилинд­ре. В картерных газах дизеля основные токсичные компоненты – оксиды азота (45…80%) и альдегиды (до 30%). Максимальная токсичность картерных газов дизелей в 10 раз ниже, чем отработавших газов, поэтому доля картерных газов у дизеля не превышает 0,2…0,3% суммарного выброса токсичных веществ. Учитывая это, в автомобильных дизелях принудительную вентиляцию карте­ра обычно не применяют.

Основные источники топливных испарений – топливный бак и система питания. Более высокие температуры подкапотного пространства, обусловленные более нагруженными режимами работы двигателя и относительной стесненнос­тью моторного отсека автомобиля, вызывают значительные топливные испаре­ния из топливной системы при остановке горячего двигателя. Учитывая большой выброс углеводородный соединений в результате топливных испарений все производители автомобилей в настоящее время применяют специальные системы их улавливания.

Кроме углеводородов, поступающих из системы питания автомобилей, значительное загрязнение атмосферы летучими углеводородами автомобиль­ного топлива происходит при заправке автомобилей (в среднем 1,4 г СН на 1 л заливаемого топлива). Испарения вызывают также физические изменения в самих бензинах: вследствие изменения фракционного состава повышается их плотность, ухудшаются пусковые качества, снижается октановое число бен­зинов термического крекинга и прямой перегонки нефти. У дизельных автомо­билей топливные испарения практически отсутствуют вследствие малой ис­паряемости дизельного топлива и герметичности топливной системы дизеля.

Оценка уровня загрязнения атмосферы производится сопоставлением измеренной и предельно допустимой концентрации (ПДК). Значения ПДК устанавливаются для различных токсичных веществ при постоянном, среднесуточном и разовом действиях. В таблице приведены среднесуточные значения ПДК для некоторых токсичных веществ.

Таблица. Допустимые концентрации токсичных веществ

По данным исследований, легковой автомобиль при среднегодовом про­беге 15 тыс. км «вдыхает» 4,35 т кислорода и «выдыхает» 3,25 т углекислого газа, 0,8 т оксида углерода, 0,2 т углеводородов, 0,04 т оксидов азота. В отли­чие от промышленных предприятий, выброс которых концентрируется в опре­деленной зоне, автомобиль рассеивает продукты неполного сгорания топлива практически по всей территории городов, причем непосредственно в призем­ном слое атмосферы.

Удельный вес загрязнений автомобилями в крупных городах достигает больших значений.

Таблица. Доля автомобильного транспорта в общем загрязнении атмосферы в крупнейших городах мира, %

Токсичные компоненты отработавших газов и испарения из топливной системы отрицательно воздействуют на организм человека. Степень воздей­ствия зависит от их концентраций в атмосфере, состояния человека и его ин­дивидуальных особенностей.

Оксид углерода

Оксид углерода (СО) – бесцветный, не имеющий запаха газ. Плот­ность СО меньше, чем воздуха, и поэтому он легко может распространятся в атмосфере. Поступая в организм человека с вдыхаемым воздухом, СО сни­жает функцию кислородного питания, вытесняя кислород из крови. Это объясняет­ся тем, что поглощаемость СО кровью в 240 раз выше поглощаемости кисло­рода. Прямое влияние оказывает СО на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т.д. В результате кислородного голодания токсический эффект СО связан с непосредственным влиянием на клетки центральной нервной системы. Повышение концентрации окиси углерода опасны и тем, что в результате кислородного голодания организма ослабляется внимание, замедля­ется реакция, падает работоспособность водителей, что влияет на безопас­ность дорожного движения.

Характер токсического воздействия СО можно проследить по диаграмме, представленной на рисунок.

Рис. Диаграмма воздействия СО на организм человека:
1 – смертельный исход; 2 – смертельная опасность; 3 – головная боль, тошнота; 4 – начало токсического действия; 5 – начало заметного действия; 6 – незаметное действие; Т,ч - время воздействия

Из диаграммы следует, что даже при незначительной концентрации СО в воздухе (до 0,01%) длительное воздействие его вызывает головную боль и приводит к снижению работоспо­собности. Более высокая концентрация СО (0,02…0,033%) приводит к развитию атеросклероза, возникновению инфаркта миокарда и развитию хронических легочных заболеваний. Причем особенно вредно воздействие СО на людей, страдающих коронарной недос­таточностью. При концентрации СО около 1% наступает потеря сознания уже через несколько вздохов. СО ока­зывает негативное влияние и на нервную систему человека, вызы­вая обмороки, а также изменения цветовой и световой чувстви­тельности глаз. Симптомы отравления СО – головная боль, серд­цебиение, затрудненное дыхание и тошнота. Следует отметить, что при сравнительно небольших концентрациях в атмосфере (до 0,002%), СО связанный с гемоглобином, посте­пенно выделяется и кровь человека очищается от него на 50% каж­дые 3-4 ч.

Углеводородные соединения

Углеводородные соединения по их биологическому действию изуче­ны пока еще недостаточно. Однако экспериментальные исследования пока­зали, что полициклические ароматические соединения вызывали раку живот­ных. При наличие определенных атмосферных условий (безветрие, напряжен­ная солнечная радиация, значительная температурная инверсия) углеводоро­ды служат исходными продуктами для образования чрезвычайно токсичных продуктов – фотооксидантов, обладающих сильными раздражающим и обще­токсичным действием на органы человека, и образуют фотохимический смог. Особенно опасными из группы углеводородов являются канцерогенные веще­ства. Наиболее изученным является многоядерный ароматический углеводо­род бенз(а)пирен, известный еще под названием 3,4 бенз(а)пирен, – вещество, представляющее собой кристаллы желтого цвета. Установлено, что в местах непосредственного контакта канцерогенных веществ с тканью появляются злокачественные опухоли. В случае попадания канцерогенных веществ, осев­ших на пылевидных частицах, через дыхательные пути в легкие они задержи­ваются в организме. Токсичными углеводородами являются также и пары бен­зина, попадающие в атмосферу из топливной системы, и картерные газы, вы­ходящие через вентиляционные устройства и неплотности в соединениях от­дельных узлов и систем двигателя.

Оксид азота

Оксид азота – бесцветный газ, а диоксид азота – газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм чело­века соединяются с водой. При этом они образуют в дыхательных путях со­единения азотной и азотистой кислот, раздражающе действуя на слизистые оболочки глаз, носа и рта. Оксиды азота участвуют в процессах, ведущих к образованию смога. Опасность их воздействия заключается в том, что от­равление организма проявляется не сразу, а постепенно, причем нет каких-либо нейтрализующих средств.

Сажа

Сажа при попадании в организм человека вызывает негативные послед­ствия в дыхательных органах. Если относительно крупные частицы сажи раз­мером 2…10 мкм легко выводятся из организма, то мелкие размером 0,5…2 мкм задерживаются в легких, дыхательных путях, вызывают аллергию. Как любая аэрозоль, сажа загрязняет воздух, ухудшает видимость на дорогах, но, самое главное, на ней адсорбируются тяжелые ароматические-углеводороды, в том числе бенз(а)пирен.

Сернистый ангидрид SО2

Сернистый ангидрид SО2 – бесцветный газ с острым запахом. Раз­дражающее действие на верхние дыхательные пути объясняется поглощение SO2 влажной поверхностью слизистых оболочек и образованием в них кислот. Он нарушает белковый обмен и ферментативные процессы, вызывает раз­дражение глаз, кашель.

Диоксид углерода СО2

Диоксид углерода СО2 (углекислый газ) – не оказывает токсического действия на ор­ганизм человека. Он хорошо поглощается растениями с выделени­ем кислорода. Но при наличии в атмосфере земли значительного количества углекислого газа, поглощающего солнечные лучи, соз­дается парниковый эффект, приводящий к так называемому «теп­ловому загрязнению». Вследствие этого явления повыша­ется температура воздуха в нижних слоях атмосферы, происходит потепление, наблюдаются различные климатические аномалии. Кроме того, повышение содержания в атмосфере СО2 способствует образованию «озоновых» дыр. При снижении концентрации озона в атмосфере земли повышается от­рицательное воздействие жесткого ультрафиолетового излучения ни организм человека.

Автомобиль является источником загрязнения воздуха также пылью. Во время езды, особенно при торможении, в результате трения покрышек о поверхность дороги образует­ся резиновая пыль, которая постоянно присутствует в воздухе на магистралях с интенсивным движением. Но покрышки не являются единственным источни­ком пыли. Твердые частицы в виде пыли выделяются с отработавшими газами, завозятся в город в виде грязи на кузовах автомобилей, образуются от истира­ния дорожного покрытия, поднимаются в воздух вихревыми потоками, возника­ющими при движении автомобиля, и т.д. Пыль отрицательно сказывается на здоровье человека, губительно действует на растительный мир.

В городских условиях автомобиль является источником согревания ок­ружающего воздуха. Если в городе одновременно движется 100 тыс. автома­шин, то это равно эффекту, производимому 1 млн. л горячей воды. Отработав­шие газы автомобилей, содержащие теплый водяной пар, вносят свой вклад в изменение климата города. Более высокие температуры пара усиливают пе­ренос тепла движущейся средой (термическая конвекция), в результате чего количество осадков над городом возрастает. Влияние города на количество осадков особенно отчетливо видно по их закономерному увеличению, проис­ходящему параллельно с ростом города. За десятилетний период наблюде­ний в Москве, например, выпадало 668 мм осадков в год, в ее окрестностях – 572 мм, в Чикаго – 841 и 500 мм соответственно.

К числу побочных проявлений деятельности чело­века относятся и кислотные дожди – растворенные в атмосферной влаге продукты сгорания – оксиды азота и серы. В основном это относится к промышлен­ным предприятиям, выбросы которых отводятся высо­ко над уровнем поверхности и в составе которых мно­го оксидов серы. Вредное воздействие кислотных дож­дей проявляется в уничтожении растительности и ускорении коррозии металлических конструкций. Важным фактором здесь является и то, что кислотные дожди способны вместе с движением атмосферных воздушных масс преодолевать расстояния в сотни и тысячи километров, пересекая границы государств. В периодической печати появляются сообщения о кислотных дождях, выпадающих в разных странах Европы, в США, Канаде и замеченных даже в таких заповедных зонах, как бассейн Амазонки.

Неблагоприятное воздействие на окружающую среду оказывают температурные инверсии – особое состояние атмосферы, при котором температура воздуха с высотой увеличивается, а не уменьшается. Приземные температурные инверсии являются результатом ин­тенсивного излучения тепла поверхностью почвы, вследствие чего охлаждаются и поверхность, и прилега­ющие слои воздуха. Подобное состояние атмосферы препятствует развитию вертикальных движений воздуха, поэтому в нижних слоях накапливаются водяной пар, пыль, газообразные вещества, способствуя образованию слоев дымки и тумана, в том числе – смога.

Широкое применение соли для борьбы с гололедом на автомобильных дорогах ведет к сокращению срока службы автомобилей, вызывает неожиданные изменения в придорожной флоре. Так, в Англии отмечено появле­ние вдоль дорог растений, характерных для морских побережий.

Автомобиль – сильный загрязнитель водоемов, подземных водных ис­точников. Определено, что 1 л нефти может сделать непригодным для питья несколько тысяч литров воды.

Большой вклад в загрязнение окружающей среды вносят процессы техни­ческого обслуживания и ремонта подвижного состава которые требуют энерге­тических затрат и связаны с большим водопотреблением, выбросом загрязняю­щих веществ в атмосферу, образованием отходов, в том числе токсичных.

При выполнении технического обслуживания транспортных средств за­действованы подразделения, зоны периодических и оперативных форм тех­нического обслуживания. Выполнение ремонтных работ ведется на производ­ственных участках. Используемые в процессах ТО и ремонта технологичес­кое оборудование, станки, средства механизации и котельные установки яв­ляются стационарными источниками загрязняющих веществ.

Таблица. Источники выделения и состав вредных веществ в производственных процессах на эксплуатационных и ремонтных предприятиях транспорта

Название зоны, участка, отделения

Производственный процесс

Используемое оборудование

Выделяющиеся вредные вещества

Участок мойки подвижного состава

Омывка наружных поверхностей

Механическая мойка (моечные машины), шланговая мойка

Пыль, щелочи, поверхностно-активные синтетические вещества, нефтепродукты, растворяемые кислоты, фенолы

Зоны технического обслуживания, участок диагностики

Техническое обслуживание

Подъемно-транспортирующие устройства, смотровые канавы, стенды, оборудование для замены смазки, комплектующих, система вытяжной вентиляции

Оксид углерода, углеводороды, оксиды азота, масляный туман, сажа, пыль

Слесарно-механическое отделение

Слесарные, расточные, сверлильные, строгальные работы

Токарный, вертикально-сверлильный, строгальный, фрезерный, шлифовальный и др. станки

Пыль абразивная, металлическая стружка, масляный туман, эмульсии

Элсктротехничсское отделение

Заточные, изолировочные, обмоточные работы

Заточной станок, электролудильные ванны, оборудование для пайки, стенды испытаний

Абразивная и асбестовая пыль, канифоль, пары кислот, третник

Аккумуляторный участок

Сборочно-разборочные и зарядные работы

Ванны для промывки и очистки, сварочное оборудование, стел- лажи, система вы­тяжной вентиляции

Промывочные

растворы, пары кислот, электролит, шламы, промывочные аэрозоли

Отделение топливной аппаратуры

Регулировочные и ремонтные работы по топливной аппаратуре

Проверочные стенды, специальная оснастка, система вентиляции

Бензин, керосин, дизельное топливо. ацетон, бензол, ветошь

Кузнечно-рессорное отделение

Ковка, закалка, отпуск металлических изделий Кузнечный горн, термические ванны, система вытяжной вентиляции Угольная пыль, сажа, оксиды углерода, азота, серы, загрязненные сточные воды
Медницко-жестяницкое отделение Резка, пайка, правка, формовка по шаблонам Ножницы по металлу, оборудование для пайки, шаблоны, система вентиляции Пары кислот, третник, наждачная и метал­лическая пыль и отходы
Сварочное отделение Электродуговая и газовая сварка Оборудование для дуговой сварки, ацетилена — кисло­родный генератор, система вытяжной вентиляции Минеральная пыль, сварочный аэрозоль, оксиды марганца, азота, хрома, хлорис­тый водород, фториды
Арматурное отделение Резка стекол, ремонт дверей, полов, сидений, внутренней отделки Электрический и ручной инструмент, сварочное оборудование Пыль, сварочный аэрозоль, древесная и металлическая стружка, металличес­кие и пластмассовые отходы
Обойное

отделение

Ремонт и за­мена изношен­ных, повреж­денных сиде­ний, полок, кресел, диванов Швейные машины, раскройные столы, ножи для кройки и резки поролона Пыль минеральная и органическая, отходы тканей и синтетических материалов
Участок шиномонтажа и ремонта шин Разборка и сборка шин, ремонт покры­шек и камер, балансировоч­ные работы Стенды для разборки и сборки шин, оборудование для вулканизации, станки для динамической и статической балан­сировки Минеральная и резиновая пыль, сернистый ангидрид, пары бензина
Участок

лакокрасочных

покрытий

Удаление старой краски, обез­жиривание, нанесение лакокрасочных покрытий Оборудование для пневматического или безвоздушного распыления, ванны, сушильные камеры, система вентиляции Пыль минеральная и органическая, пар-растворителей и аэг золи красок, загряз­ненные сточные в^ я
Участок обкатки двигателей (для ремонтных предприятий) Холодная и горячая обкатка двигателя Стенд для обкатки, система вытяжной вентиляции Оксиды углерода, азота, углеводорода, сажа, сернистый ангидрид
Стоянки и места отстоя подвижного состава Перемещение единиц подвижного состава, ожидание Оборудованная площадка открытого или закрытого хранения Тоже

Сточные воды

При эксплуатации автомобилей образуются сточные воды. Состав и количество этих вод различны. Сточные воды возвращаются обратно в окружающую среду, главным образом в объекты гидросферы (река, канал, озеро, водохранилище) и суши (поля, накопители, подземные горизонты и др.). В зависимости от вида производства сточными водами на предприятиях транспорта могут являться:

  • сточные воды от мойки автомобилей
  • нефтесодержащие стоки от производственных участков (моющие растворы)
  • сточные воды, содержащие тяжелые металлы, кислоты, щелочи
  • сточные воды, содержащие краску, растворители

Сточные воды от мойки автомобилей составляют от 80 до 85% от объема производственных стоков автотранспортных организаций. Основными загрязнителями являются взвешенные вещества и нефтепродукты. Их содержание зависит от типа автомобиля, характера дорожного покрытия, погодных условий, характера перевозимого груза и др.

Сточные воды от мойки агрегатов, узлов и деталей (отработанные моющие растворы) отличаются наличием в них значительного количества нефтепродуктов, взвешенных веществ, щелочных компонентов и поверхностно-активных веществ.

Сточные воды, содержащие тяжелые металлы (хром, медь, никель, цинк), кислоты и щелочи наиболее характерны для авторемонтных производств, использующих гальванические процессы. Они образуются в процессе приготовления электролитов, подготовки поверхностей (электрохимическое обезжиривание, травление) гальванопокрытий и промывки деталей.

В процессе проведения малярных работ (методом пневматического распыления) 40% лакокрасочных материалов поступает в воздух рабочей зоны. При проведении этих операций в окрасочных камерах, оборудованных гидрофильтрами, 90% этого количества оседает на элементах самих гидрофильтров, 10% уносится с водой. Таким образом, в сточные воды окрасочных участков попадает до 4% израсходованных лакокрасочных материалов.

Основным направлением в области снижения загрязнения водных объектов, грунтовых и подземных вод промышленными стоками, является создание систем оборотного водоснабжения производства.

Ремонтные работы сопровождаются также загрязнением почвы, на­коплением металлических, пластмассовых и резиновых отходов вблизи про­изводственных участков и отделений.

При строительстве и ремонте путей сообщения, а также производственно-бытовых объектов предприятий транспорта происходит изъятие из экосистем воды, грунта, плодородных почв, минеральных ресурсов недр, разрушение природных ландшафтов, вмешательство в животный и растительный мир.

Шум

Наряду с другими видами транспорта, промышленным оборудованием, бытовыми приборами автомобиль является источником искусственного шу­мового фона города, как правило, отрицательно воздействующего на челове­ка. Следует отметить, что и без шума, если он не превышает допустимых пре­делов, человек чувствует дискомфорт. Не случайно исследователи Арктики не раз писали о «белом безмолвии», которое угнетающе действует на челове­ка, тогда как «шумовое оформление» природы положительно влияет на психи­ку. Однако шум искусственного происхождения, особенно сильный шум, отри­цательно влияет на нервную систему. Перед населением современных горо­дов возникает серьезная проблема борьбы с шумом, так как сильный шум не только ведет к потере слуха, но и вызывает психические расстройства. Опас­ность шумового воздействия усугубляется свойством человеческого организ­ма накапливать акустические раздражения. Под действием шума определен­ной интенсивности возникают изменения в циркуляции крови, работе сердца и желез внутренней секреции, снижается мышечная выносливость. Статисти­ческие данные свидетельствуют о том, что процент нервно-психических забо­леваний выше среди лиц, работающих в условиях повышенного уровня шума. Реакция на шум зачастую выражается в повышенной возбудимости и раздражительности, охватываю­щих всю сферу чувствительных восприятий. Люди, подвергающиеся постоян­ному воздействию шума, часто становятся трудными в общении.

Шум оказывает вредное влияние на зрительный и вестибулярный анали­заторы, снижает устойчивость ясного видения и рефлекторную деятельность. Чувствительность сумеречного зрения ослабевает, снижается чувствительность дневного зрения к оранжево-красным лучам. В этом смысле шум является кос­венным убийцей многих людей на автотранспортных магистралях мира. Это от­носится как к водителям автотранспорта, работающим в условиях интенсивного шума и вибрации, так и к жителям крупных городов с высоким уровнем шума.

Особенно вреден шум в сочетании с вибрацией. Если кратковременная вибрация тонизирует организм, то постоянная вызывает так называемую виб­рационную болезнь, т.е. целый комплекс нарушений в организме. У водителя снижается острота зрения, сужается поле видимости, может изменится вос­приятие цвета или способность оценивать расстояние до встречного автомо­биля. Нарушения эти, конечно, индивидуальны, однако для профессиональ­ного водителя они всегда нежелательны.

Опасным является также инфразвук, т.е. звук с частотой менее 17 Гц. Этот индивидуальный и неслышный враг вызывает реакции, противопоказан­ные человеку за рулем. Воздействие инфразвука на организм вызывает сон­ливость, ухудшение остроты зрения и замедленную реакцию на опасность.

Из источников шума и вибрации в автомобиле (коробка передач, задний мост, карданный вал, кузов, кабина, подвеска, а также колеса, шины) основным является двигатель с его системами впуска и выпуска, охлаждения и питания.

Рис. Анализ источников шума грузового автомобиля:
1 – суммарный шум; 2 – двигатель; 3 – система выпуска отработавших газов; 4 – вентилятор; 5 – впуск воздуха; 6 – остальное

Тем не менее, при скорости движения автомобиля более 50 км/ ч преобладающим является шум создаваемый шинами автомобиля, который увеличивается пропорционально скорости движения.

Рис. Зависимость шума автомобиля от скорости движения:
1 – диапазон рассеивания шума из-за разных сочетаний дорожных покрытий и шин

Совокупное действие всех источников акустического излучения и приво­дит к тем высоким уровням шума, которыми характеризуется современный автомобиль. Эти уровни зависят и от других причин:

  • состояния дорожного по­крытия
  • скорости и изменения направления движения
  • изменения частоты вра­щения коленчатого вала двигателя
  • нагрузки
  • и т.д.

В больших городах атмосферу загрязняют выбросы автотранспорта. В Москве и ее пригородах и в ряде районов Подмосковья выбросы от автотранспорта составляют около 70 % от общего числа выбросов вредных веществ.[ ...]

В настоящее время тенаксы пользуются чрезвычайно большой популярностью у аналитиков: их применяют для концентрирования из воздуха (и воды после выдувания примесей, см. раздел 6) микропримесей ЛОС в газовой хроматографии и ГХ/МС-анализе при исследовании воздуха городов и жилых помещений, определении качества воздуха рабочей зоны и административных зданий, выхлопных газов автотранспорта и выбросов промышленных предприятий, атмосферы отсеков орбитальных космических аппаратов и подводных лодок, атмосферы планет и др.[ ...]

В условиях загрязнения атмосферного воздуха промышленными выбросами, выхлопными газами автотранспорта фотохимические реакции проходят под действием обычной солнечной радиации. При этом возможно превращение окиси азота в двуокись, накопление озона в атмосфере и др. При взаимодействии углеводородов с озоном или атомарным кислородом образуются свободные пероксильные, высокореактивные вещества, способные вступать в реакцию с окислами азота и другими соединениями и образовывать сложный комплекс веществ, обладающих окислительными свойствами, - оксиданты.[ ...]

В целом, если судить по официальным данным на 2001 г., уровень загрязнения атмосферного воздуха, особенно в городах России, остается высоким, несмотря на значительный спад производства, что связывают, прежде всего, с увеличением количества автомобилей, в том числе - неисправных. Так, из общего суммарного выброса загрязняющих веществ в атмосферу в 2001 г. - 41,8 млн т, на долю автотранспорта приходится 14 млн т (34%).[ ...]

Выбросы автотранспорта. В мире насчитывается несколько сот миллионов автомобилей, которые сжигают огромное количество нефтепродуктов, существенно загрязняя атмосферный воздух, особенно в крупных городах. Так, в Москве на долю автотранспорта приходится 80% от общего количества выбросов в атмосферу.[ ...]

В нашей стране особенно велик вклад автотранспорта в загрязнение воздушного бассейна крупных городов, в частности, в Москве на него приходится 2/з общего загрязнения атмосферы, 90% -по окиси углерода, 70% - nd окисям азота. Продолжается в столице массовая эксплуатация автомобилей с неотрегулированными двигателями. Подсчитано, что правильная регулировка у автомобиля топливной системы позволяет уменьшить вредные выбросы в среднем в 1,5 раза, а применение нейтрализаторов выхлопных газов снижает их токсичность в 6 раз (Хорев, Глушкова, 1991).[ ...]

В то же время в силу геоморфологического положения и особенностей климата в Мехико примерно половина дней в году характеризуется инверсией температур в приземном слое воздуха. Это обстоятельство, а также большая загазованность атмосферы города выхлопами автотранспорта (в Мехико насчитывается свыше 3,0 млн. автомобилей, а их прирост составляет 240 тыс.в год) стали причинами частого возникновения фотохимического смога. Издали город кажется плавающим в клубах серо-желтого дыма. Выбросы газообразных загрязняющих веществ от промышленных предприятий и автотранспорта достигают 4,5 млн.т в год. В 1994 г. концентрация озона на юго-западе города превышала ПДК в течение 345 дней и это вызывало недомогание у многих жителей. В городе каждые четыре из пяти детей страдают от респираторных заболеваний. Некачественную воду пьют 70% жителей.[ ...]

Автотранспорт современного столичного города (Парижа, например) за один день выбрасывает в воздух более 50 млн. м3 окиси углерода и более 200 млн. м3 других продуктов неполного сгорания . Ежегодно от искусственных (не биологических) источников в атмосферу Земли поступает 100 млн. т выбросов.[ ...]

Выбросы промышленных предприятий и выхлопные газы автотранспорта, которые содержат токсичные компоненты, представляют собой угрозу для атмосферы и здоровья человека. Вблизи промышленных предприятий и на улицах с интенсивным движением автотранспорта концентрация токсичных компонентов превышает во много раз санитарнодопустимые нормы . Поэтому проблема защиты атмосферы от загрязняющих веществ сохраняет свою актуальность в настоящее время и на перспективу.[ ...]

В ФРГ, согласно Ливиту (Ьеау, 1971), с 1962 г. действует метеорологическая служба предупреждения об опасных условиях загрязнения атмосферы. Она установила две стадии опасности в зависимости от ожидаемой концентрации сернистого газа. К первой относятся случаи, когда концентрации достигают 2,5 мг/м3, к второй - 5 мг/м3. В этих случаях требуется снижение выброса от предприятий и автотранспорта. Предложения по оперативному регулированию выбросов в зависимости от метеорологических условий для предприятий Северо-Чешского буроугольиого бассейна рассматривались Мунзаром (Мипгаг, 1972).[ ...]

Выбросы автотранспорта оказывают большее влияние на лесные экосистемы в результате загрязнения атмосферы; загрязнения и нарушения дренажа поверхностных и грунтовых вод; загрязнения почвы; изъятия земель; воздействия на животный мир; преобразования рельефа и геологической среды; шумового воздействия и вибрации. Загрязнение почвы и, соответственно, растительности происходит в относительно узкой придорожной полосе (от 100-150 до 300 м).[ ...]

В результате принимаемых мер на энергетических предприятиях города за последнее время выброс окислов азота от них несколько уменьшился. Рост уровня загрязнения атмосферы города окислами азота можно объяснить увеличением выбросов автотранспорта в результате предпринимаемых мер по ограничению выбросов окиси углерода путем регулировки карбюратора двигателя. Эта подтверждается экспериментальными данными (табл. 1.6).[ ...]

Выбросы автотранспорта. В мире насчитывается несколько сот миллионов автомобилей, которые сжигают огромное количество нефтепродуктов, существенно загрязняя атмосферный воздух, особенно в крупных городах. В России в 1991 г. суммарный выброс загрязняющих веществ в атмосферу от автотранспорта составил 21 млн т. Выхлопные газы двигателей внутреннего сгорания содержат огромное количество токсичных соединений: бенз(а)пирена, альдегидов, оксидов азота и углерода и особо опасных соединений свинца (в случае применения этилированного бензина). Ежегодно мировой парк автотранспорта выбрасывает в атмосферу свыше 0,4 млн т свинца.[ ...]

Автотранспорт США в 1966 году выбросил в воздух 6 млн. т окислов азота. В отработанных газах автомобилей с бензиновым двигателем, по данным И. Л. Варшавского, Р. В. Малова (1968), содержится до 0,8% окислов азота, с дизельным двигателем- до 0,5%. По ориентировочным расчетным данным Katz (1962), на 1 т горючего двигатели выбрасывают окислов азота: бензиновые-12,3 кг, дизельные - 24,5 кг. В атмосферу Лос-Анджелеса в июле 1958 года автотранспорт ежесуточно выбрасывал 393 т окислов азота, или почти две трети общего поступления этих загрязнителей в воздух.[ ...]

В атмосферу городов 50-90% загрязнителей поступают от автотранспорта (60%, общего загрязнения земли). В их составе более 200 компонентов, из которых только пять нетоксичных . Концентрация СО в воздухе крупных городов достигает 30- 35 мг/м3 и создает опасность хронического отравления . В течение года автомобили такой маленькой страны, как Швейца- -рия, выбрасывают в воздух 165 т очень ядовитых соединений свинца. По исследованиям выброс сернистого ангидрида за год в атмосферу составляет (млн. т): США - 40; ФРГ - 4; Канада - 3,5.[ ...]

В крупных городах значительную долю выбросов в атмосферу дает автотранспорт. Среди отраслей промышленности особенно токсичные атмосферные выбросы обеспечивают предприятия цветной металлургии, химической, нефтехимической, черной металлургии, деревообрабатывающей и целлюлозно-бумажной промышленности.[ ...]

В 2000 г. по сравнению с 1999 г. Москве удалось снизить выбросы в атмосферу от автотранспорта на 160 тыс. т. Этому способствовало открытие новых участков третьего транспортного кольца, там выше средняя скорость и, соответственно, меньше выбросов.[ ...]

В нашей стране на долю автотранспорта приходится более 45 % от валового выброса в атмосферу всех загрязнений. В 1995 г. в Москве эта доля была около 87 % (более 1,7 млн т). а в городах РФ максимальные разовые концентрации отдельных загрязнений превышают санитарные нормы в 55 раз.[ ...]

В США каждый легковой автомобиль ежегодно выделяет в воздух в среднем 800 кг окиси углерода, 220 кг углеводородов и 40 кг окислов азота (Phillips, 1971). На улицах американских городов концентрации окиси углерода в воздухе нередко превышают 60 мг/м3 (Linch, Pfatt, 1971).[ ...]

В связи с бурным развитием автотранспорта загрязнение атмосферного воздуха этим источником постепенно возрастает. По оценке специалистов, выбросы от автотранспорта в странах - членах СЭВ составляли 35%.[ ...]

Выбросы промышленных предприятий. Основными источниками загрязнений атмосферы являются тепловые электростанции (29% загрязнений) предприятия черной и цветной металлургии (соответственно 24 и 10,5%), нефтехимической промышленности (15,5%), строительных материалов (8,1%), химической промышленности (1,3%), автотранспорта (13,3%). В крупных городах доля выбросов загрязняющих веществ автотранспортом достигает 60-80%.[ ...]

В ряде зарубежных стран (Франция, Германия, США и др.) автотранспорт дает до 50-60% всего загрязнения атмосферы (в нашей стране - около 40%). Причем среди различных транспортных средств именно автомобили выбрасывают наибольшее количество вредных компонентов. Например, в США (середина 80-х годов) среди вредных выбросов доминировал оксид углерода (ежегодно 96 млн т), из которых на автотранспорт приходилось (включая шоссейные средства) более 66 млн т.; на морской транспорт - 1,5; авиационный - 1,0 и на железнодорожный - всего 0,3 млн т (Защита атмосферы..., 1988).[ ...]

В 2001 г. по республике автотранспортом в атмосферу было выброшено: оксида углерода - 551,3 тыс. т (86,5% объема валового выброса СО по республике); углеводородов - 102,2 тыс. т (70,9% объема валового выброса СИ); оксидов азота - 62,6 тыс. т (53,8% объема валового выброса М02).[ ...]

Автотранспорт является источником выброса в атмосферу большого количества вредных веществ. Например, в США в настоящее время выбросы от автотранспорта составляют более 60 % общего загрязнения в городах. Двигатели внутреннего сгорания выделяют ряд вредных, в том числе канцерогенных веществ (табл. 28).[ ...]

Городской автотранспорт является одним из крупнейших загрязнителей окружающей среды. В масштабах Российской Федерации доля автотранспорта в суммарных выбросах загрязняющих веществ в атмосферу всеми техногенными источниками достигает в среднем 43 %. Наибольшая доля этого ущерба (до 60 %) связана с перевозкой пассажиров легковыми автомобилями.[ ...]

К примесям в атмосфере антропогенного происхождения относятся: выбросы промышленных предприятий, автотранспорта, сельскохозяйственных предприятий, продукты сгорания топлива и сжигания отходов. Эти примеси характеризуются большой сосредоточенностью в пространстве, неоднородностью по составу и неравномерностью распределения. Выбросы наблюдаются в густонаселенных районах; они содержат много веществ, отрицательно влияющих на здоровье человека, материалы, растительный и животный мир.[ ...]

Постоянный выброс оксидов азота за последние годы связан главным образом с развитием автотранспорта. Кроме того, тенденция к более полному использованию топлива также приводит к увеличению выбросов N0 , так как повышение эффективности работы мотора связано с ростом температуры. Растет число выбросов и при увеличении скорости движения транспорта, причем нелинейно: количество N0, нарастает быстрее. Таким образом, концентрация N0 на автотрассах растет также с увеличением скорости автомашин. Антропогенное загрязнение.атмосферы оксидами азота принимает критический характер в густонаселенных городах, где чаще выпадают осадки. Наивысшие концентрации выбросов в городах достигают значений 800 - 1200 мкг/м3.[ ...]

Оценивались выбросы семи наиболее массовых вредных веществ: оксида углерода, углеводородов, диоксида азота, сажи, диоксида серы, соединений свинца и твердых веществ. В среднем общая масса загрязняющих веществ, поступающих в атмосферу от передвижных источников, составляет около 12 млн. т в год, в том числе от автотранспорта - 95%, воздушного транспорта - 2,5%, морского и речного транспорта --2,8%.[ ...]

Как видно на рис. 77, в 1992 г. наД территорией Ростовской области в атмосферу было выброшено 1019 тыс. т вредных веществ, из них 508 тыс. т приходилось на автотранспорт (около 50%). В г. Ростове-на-Дону выбросы автотранспорта составили 74,3 тыс. т (или 65% от общего количества вредных веществ). Однако в крупных промышленных центрах России (Норильск - рекорд по выбросам в стране - 2486 тыс. т/год; Новокузнецк, Магнитогорск, Череповец, Челябинск и др.) преобладают выбросы в атмосферу от стационарных источников (промышленные предприятия, крупные ТЭЦ). Аналогичная картина и в городах Ростовской области. Первое место с большим отрывом по выбросам вредных веществ в атмосферу от стационарных источников занимает Новочеркасск - около 273 тыс. т в год, из них 256 тыс. т приходится на городскую ГРЭС (для сравнения на втором месте по выбросам идет электродный завод -11 тыс. т/год). Такая неблагоприятная экологическая обстановка в городах приводит к резкому увеличению различных заболеваний городских жителей, в частности в Москве более 20% всех заболеваний связано именно с загрязнениями воздушного бассейна.[ ...]

Загрязнение за счет выбросов автотранспорта оценивается с помощью расчетных методов в зависимости от типа двигателя и времени его эксплуатации. Аналогичным образом на основе существующих методик рассчитываются выбросы и для других источников. Регулирование выбросов газов от работающей техники производится на основе установленных нормативов (ПДВ) в целом для предприятия - геофизической экспедиции. Гораздо труднее оценить поступление газовой смеси и сажи в атмосферу при сжигании порубочных остатков, такие оценки практически не осуществляются. Поступление некоторого количества газов в атмосферу при взрывных работах также не поддается нормированию, хотя основная масса выбрасываемых газов достаточно точно рассчитывается на основе зависимости от массы взрывчатого вещества.[ ...]

Так как после сжигания в соответствующих условиях органических соединений одним из основных продуктов является С02, то ранее предложенные анализаторы могут быть использованы для их определения. Это тем более важно, что ряд углеводородов считают потенциально вредными веществами, участвующими в образовании фотохимических загрязнений в виде дыма и паров, обладающих неприятным запахом. Основной источник выброса в атмосферу непредельных, предельных и ароматических углеводородов - промышленные предприятия (нефтеперерабатывающие заводы, производства пластмасс, синтетического каучука и др.) и большинство транспортных средств. Выхлопные газы автотранспорта обычно содержат предельные, непредельные и ароматические углеводороды.[ ...]

Крупнейшим источником загрязнения атмосферы является транспортный комплекс. В крупных городах только на долю автотранспорта приходится более половины выбросов вредных веществ в атмосферу. Большое количество автотранспортных средств создает экологически опасную ситуацию в городах Москва, Волгоград, Тольятти, Казань, Уфа, Пермь.[ ...]

Программой предусматривается снижение вредных выбросов в атмосферу в результате проведения комплекса воздухоохранных мероприятий, включающих использование экологически чистых видов топлива, централизацию теплоснабжения, использование нетрадиционных, видов получения энергии, не загрязняющих атмосферу, модернизацию оборудования, ликвидацию неорганизованных источников загрязнения, герметизацию и уплотнение транспортно-размольного и погрузочно-разгрузочного оборудования, совершенствование технологии, внедрение безотходных и, малоотходных технологических процессов, перевод автотранспорта на менее токсичное дизельное топливо, на сжатый и сжиженный газ, внедрение специальных нейтрализаторов для отработанных газов двигателей автомобилей, создание диагностических постов и пунктов контроля технического состояния автомобилей и т. д.[ ...]

За счет проведения мероприятий по сокращению вредных выбросов в атмосферу от автотранспорта общее их количество снизится к 2005 г. до 1Q,9 млн. т (или на 46%).[ ...]

Показательно соотношение между главными загрязнителями атмосферы и их источниками на примере г. Москвы. Из 1,2 млн. т вредных выбросов в атмосферу столицы 77% - доля автотранспорта и 23% - стационарных источников. А вот каково соотношение между транспортными и промышленными выбросами по отдельным загрязняющим веществам: СО - 96% и 4%; Ж)х - 26% и 74%; углеводороды и летучие органические соединения 75% и 25%. Подчеркнем, что преобладает по массе угарный газ - всего 730 тыс.т. Стационарные источники загрязняют атмосферу сернистым ангидридом и пылью: 0,04% и 0,02% от массы общих выбросов соответственно.[ ...]

Немаловажна роль атмосферных осадков, характеризующихся достаточно низкими (в районе г. Уфы) показателями pH (5,05-7,0 дождевой и 6,2-8,2 снеговой воды), высокими концентрациями агрессивных химических соединений (SOx, NOx, СОх). Загрязнению атмосферных осадков способствуют большой объем веществ (табл. 19), выбрасываемых в атмосферу стационарными источниками и автотранспортом (доля последних составляет до 50-65%). В валовых выбросах преобладают: оксид углерода (622,4 тыс. т), сернистый ангидрид (150,5 тыс. т), диоксид азота (118,5 тыс. т), углеводы (144,2 тыс. т). Если по Башкирии выбросы в атмосферу составляют в среднем на 1 км2 8,7 т, то в Уфе - 464 т.[ ...]

Основными источниками искусственного загрязнения воздушно- -го бассейна.являются выхлопные газы автотранспорта (более 40% всех загрязнений в США), авиации и различных двигателей внутреннего сгорания, продукты сгорания топлива (нефть, уголь, газ) на тепловых электростанциях и продукты сжигания мусора, про- цессы испарения топлива и растворителей, а также выбросы различных лромышленных предприятий. В атмосфере может постоянно находиться более 260 потенциальных загрязнителей, причем число их неуклонно растет. Главными из них являются оксиды углерода, азота и серы, углеводороды, фотооксиданты, а также твердые взвешенные частицы .[ ...]

Если за 1990-1999 гг. валовой внутренний продукт снизился на 39,6%, продукция промышленности - на 50,9%, то выбросы в атмосферу от автотранспорта - на 42, водопотребление - на 26,6, сброс загрязненных сточных вод - на 25,6%. Показатели, характеризующие природоохранную деятельность, также заметно ухудшились, исключение составляет рост числа охраняемых природных территорий и их площадей. Число заповедников и национальных парков с 1990 г. возросло в 1,5 раза, а их площадь - почти вдвое. В то же время затраты на их содержание в сопоставимых ценах сократилось в 2,5-3 раза, т.е. расходы на 1 га охраняемой территории уменьшились в 5-6 раз.[ ...]

Техносфера является постоянным источником угроз, которые могут иметь серьезные последствия для человечества. Переработка и использование в хозяйственной деятельности углеводородных систем (нефти, нефтепродуктов, топлив и др.) являются одними из факторов глобального загрязнения окружающей среды на Земле. Техногенную опасность со стороны нефтеперерабатывающих и нефтехимических объектов следует учитывать при разработке технологий, которые должны отвечать стратегическим требованиям энергетической, экономической и экологической безопасности. Это неудивительно, так как наблюдаемая тенденция последовательного увеличения удельного веса углеводородных систем в мировом экономическом балансе - сложившаяся закономерность, и в обозримой перспективе эта закономерность сохранится. Для нефтеперерабатывающей и нефтехимической промышленности характерна высокая энергонасыщенность. Так, типовой нефтеперерабатывающий завод топливно-нефтехимического профиля в зависимости от производительности по сырью сосредотачивает на своей территории запас углеводородного топлива, эквивалентный 2-5 Мт тротила. Ежегодно на предприятиях происходят аварии, материальный ущерб от которых исчисляется сотнями миллионов долларов. Современные технологии ведут к экологическим кризисам и катастрофам, если не изменить подход к эксплуатации имеющихся и к проектированию новых производств. Пока негативные изменения экосистем не приняли глобальный необратимый характер необходимо проникновение в сознание людей новой идеологии - нормативного потребления окружающей среды, создание и внедрение систем безопасности и управления качеством окружающей среды. Это особенно актуально для России, так как на отечественных объектах по переработке углеводородных систем отсутствуют надежные системы предотвращения и локализации аварийных ситуаций. Продукты переработки углеводородных систем в процессе их использования оказывают серьезное влияние на качество жизни человека. Так, например, выбросы в атмосферу от автотранспорта составляют до 90% от общего загрязнения и в значительной степени зависят от качества применяемых топлив.[ ...]

Информация была подготовлена на основе обобщений годовых отчетов предприятий по форме 2ТП-воздух и справки Государственной региональной инспекции по охране атмосферного воздуха за 1988 г. Был также произведен расчет выбросов вредных веществ в атмосферу от автотранспорта за 1988 г. по методике . Вклад автотранспорта в суммарный выброс составил в 1988 г. 72%, в том числе окиси углерода - 96%, окислов азота - 30%, углеводороде® - 68%.

Во многих городах мира концентрации вредных веществ в воздухе, создаваемые выбросами автотранспорта, превышают стандарты качества атмосферного воздуха.

Во многих городах нашей страны уровень загрязнения воздуха превышает нормативы предельно допустимых концентраций. В связи с этим проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир, почвы весьма актуальна.

Уровень загрязнения воздуха вредными примесями зависит не только от количества выбросов вредных веществ, но и в большей степени от условий рассеивания примесей в атмосфере. При определенных метеорологических условиях концентрации примесей в воздухе увеличиваются и могут достигать опасных значений.

Кратковременное сокращение выбросов в периоды увеличения загрязнения воздуха может существенно улучшить состояние воздушного бассейна. Вопросы регулирования выбросов и прогноза загрязнения атмосферы тесно связаны между собой.

Существующий уровень техники в нашей стране не позволяет обеспечить нужную очистку выбросов, поэтому, естественно, возникает вопрос о возможности уменьшения выбросов хотя бы в сравнительно короткие периоды времени, когда образуется неблагоприятная метеорологическая обстановка, при которой может создаваться опасное загрязнение воздуха. Разработка краткосрочного прогноза загрязнения воздуха в настоящее время является актуальной задачей.

Полное решение проблемы уменьшения загрязнения воздуха автотранспортом зависит, в первую очередь, от технических мероприятий, касающихся повышения экологичности каждого автомобиля и уменьшения токсичности автомобильных выбросов. Это - долгосрочная программа, требующая больших материальных затрат и времени. Определить целесообразность и достаточность тех или иных технических и организационных мероприятий по снижению выбросов автотранспорта позволяет долгосрочный прогноз загрязнения воздуха с учетом информации о существующих уровнях загрязнения воздуха в городах и мероприятий по снижению выбросов автотранспорта .

Современное состояние загрязнения воздуха автотранспортом и мероприятия по снижению выбросов в различных странах.

Прежде чем перейти к вопросам определения неблагоприятных метеорологических условий для выбросов автотранспорта и разработке схем прогноза загрязнения воздуха, целесообразно провести анализ современного состояния загрязнения воздуха автотранспортом в городах России и за рубежом, а также состава автомобильных выбросов. Легковой автомобиль стал одним из необходимых атрибутов повседневной жизни людей в развитых странах. В 90-е годы в мире насчитывалось свыше 600 млн, автомобилей, по прогнозам к 2010 г. их число может достигнуть 1 млрд. Более 1/3 автомобильного парка сосредоточено в Западной Европе и Северной Америке. При росте населения за последние годы в 4-х развитых странах - Германии, Швейцарии, США и Франции в 2 раза парк автомобилей возрос в 4 раза. Доля городских передвижений на общественном транспорте для большинства городов составляет 15 - 20%. В западноевропейских странах на 1000 жителей приходится в среднем 322 легковых автомобиля, в США - 540, Венгрии -168. В 2000 г. японский автомобильный парк насчитывал 58 млн. автомобилей (т.е. 1 автомобиль на 2 человека). В развивающихся странах владение легковыми автомобилями на душу населения значительно отстает от развитых стран (в 1985 г. оно составило 5%). Однако следует отметить в последние годы рост автомобильного парка бывших соц.стран и развивающихся стран за счет импорта устаревших автомобилей с «грязными» двигателями.

Так, автопарк личного транспорта Москвы в 2008 г. составил 850 тыс. единиц. Отмечается также, что ежедневно через Москву проезжает 120 тыс. иногородних автомобилей.

В общем валовом выбросе вредных веществ в атмосферу в странах ЕЭС на долю автотранспорта приходится до 70% выбросов оксида углерода, до 50% выбросов оксидов азота (во Франции и ФРГ до 60 - 70%) и до 45% выбросов углеводородов. Почти 90% выбросов свинца падает на долю автотранспорта в странах ЕЭС. В ФРГ выброс свинца составляет 3 тыс. тонн в год. В ФРГ на долю выбросов автотранспорта приходится 59,2% оксида углерода, 57,3% оксидов азота, 76,8% углеводородов, 10,7% пыли и 3,6% диоксида серы от валовых выбросов в атмосферу всеми видами транспортных средств.

В Италии вклад автотранспорта в загрязнение атмосферы также преобладает и составляет: по оксидам азота - 61,4%, оксиду углерода - 90т9% углеводородам - 76,9%.

В Российской Федерации по данным ежегодных обзоров в 2005 г. выбросы автотранспорта составили 62% от суммарных выбросов вредных веществ (67% по оксиду углерода, 32% по диоксиду азота, 34% по углеводородам) .

Преобладание выбросов автотранспорта является особенностью крупных городов, где проживает большинство населения. В таблице 1.1 показан вклад выбросов автотранспорта оксида углерода, углеводородов и диоксида азота от суммарных выбросов каждого вещества для некоторых крупных городов мира.

Во многих городах мира концентрации диоксида азота и оксида углерода, основных веществ присутствующих в выбросах автотранспорта, превышают стандарты качества атмосферного воздуха. Для сравнения уровней загрязнения воздуха в городах бывшего СССР и других стран на рис.1.1 и 1.2 приведены средние концентрации оксида углерода и диоксида азота. В-Сантьяго, Париже загрязнение воздуха оксидом углерода было выше, чем в Санкт-Петербурге, Москве, Тбилиси. Наиболее высокие уровни среднегодовых концентраций диоксида азота характерны для Москвы, Одессы, Алматы. Максимальные разовые концентрации, которые отмечались во многих городах мира на крупных автомагистралях в часы "пик" в 10 - 15 раз превышают среднегодовые концентрации.

По данным ежегодных обзоров о выбросах вредных веществ во многих городах России выбросы автотранспорта преобладают над выбросами от промышленных источников причем, в 12 городах выбросы автотранспорта превышают 100 тыс.т./год. Наибольшие выбросы от автотранспорта в 2005 г. были отмечены в городах Москве, Тюмени, Перми, Хабаровске и др. В таблице 1.2 приводятся города с выбросами автотранспорта выше 100 тыс.т./год и вкладом автотранспорта более 50% в валовые выбросы.

Повышенное загрязнение воздуха выбросами автотранспорта характерно для городов, как зарубежных, так и России, причем уровни содержания токсичных веществ в городском воздухе соизмеримы. Основными причинами такой соизмеримости (при значительно меньшем автопарке в нашей стране) являются крайне низкое техническое состояние наших автомобилей и некачественное топливо.

В настоящее время отсутствуют точные количественные оценки ущерба, наносимого выбросами автотранспорта окружающей среде и народному хозяйству, однако значительная доля ущерба (до 80%) связывается с заболеваниями населения. По данным американских ученых, при эпидемиях гриппа количество заболеваний в городах с повышенным уровнем загрязнения диоксидом азота и оксидом углерода в 10 раз больше, чем в городах, где экологическая обстановка благополучная.

Значительный ущерб здоровью людей наносят выбросы свинца и его соединений, содержащихся в автомобильном топливе.

Исследования, проведенные в городах Японии и Каире, показали, что концентрации свинца в крови дорожных полицейских и водителей были в 2 - 2,5 раза выше, чем у сельских жителей. Уровни свинца не коррелируют с возрастом, сроком службы. Говорится о том, что такие уровни свинца в крови у дорожных полицейских могут рассматриваться, как приемлемые для данной профессии.

Выбросы от автотранспорта являются одной из причин повреждения и гибели лесов в некоторых странах Европы. В целом в Альпах вследствие загрязнения воздушного бассейна повреждено более 80% лесов.

Наиболее широкие исследования ведутся по оценке негативного воздействия свинца, обладающего способностью накапливаться в растениях, в том числе и сельскохозяйственных культурах.

Установлено, что уровень содержания свинца в растениях превышает ПДК уже при интенсивности движения транспорта свыше 2500 -3000 машин в сутки. По оценкам немецких специалистов, ежегодный ущерб окружающей среде, обусловленный задержками транспорта на перекрестках {когда происходит наибольшее выделение выхлопных газов) в городах ФРГ составляет около 150 млрд.марок. Для 39 городов США в 2000 г. эти издержки оценены в 41 млн.долларов, в для Лондона в 10 млн. ф.ст. .

Поэтому во всем мире на первый план вынесена проблема снижения негативного воздействия автотранспорта на здоровье людей, воздушный и водный бассейны, растительный и животный мир.

Для этого, прежде всего, необходимо выяснить какие вредные вещества присутствуют в выхлопных газах автомобилей и в каком количестве.

Состав отработавших газов (ОГ) зависит от типа автомобиля и потребляемого топлива. В зависимости от структуры автомобильного парка меняется структура вклада выбросов автотранспорта в загрязнение атмосферы в разных странах. В общем парке транспортных средств Западной Европы и Северной Америки большую часть составляют легковые автомобили. В Восточной Европе преобладает грузовой транспорт. Грузовой автопарк в большинстве стран состоит из дизельных и автомобилей. В странах Восточной Европы (в том числе и нашей) довольно велико количество автомобилей, работающих на бензине, то же можно сказать про США.

Парк легковых автомобилей оснащен в основном двигателями с искровым зажиганием, работающими на бензине. В некоторых странах создано относительно большое количество автомобилей работающих на газе. В России в последнее время наблюдается тенденция перевода легкового и грузового транспорта на газовое топливо. В Западной Европе нашли большое применение легковые автомобили с дизельными двигателями, и их популярность растет.

Принцип работы двигателей внутреннего сгорания карбюраторных и дизельных - различный, поэтому составы отработавших газов также различны.

Для сравнения приведены данные для карбюраторного двигателя с использованием и без использования катализатора. Дизельные двигатели принято считать более экологичными. Однако, дизельные двигатели отличаются повышенными выбросами сажи, образующейся вследствие перегрузки и плохой регулировки двигателей и системы подачи топлива. Сажа насыщена канцерогенными углеводородами и микроэлементами, которые очень вредны для здоровья человека.

К основным загрязняющим компонентам в отработавших газах (ОГ) автомобилей относятся: оксид углерода (СО), углеводороды (СХНУ), оксиды азота (NOX) и сажевый аэрозоль.

Выброс малых составляющих от автомобилей, работающих на бензине, превосходит выброс от автомобилей, работающих на дизельном топливе. Исключение составляет выброс диоксида серы.

Для автомобилей, работающих на этилированных сортах бензина, характерно присутствие в ОГ соединений свинца.

30 мая 1984 г. было юридически закреплено решение ЕЭК ООН, по которому все новые модели автомобилей должны эксплуатироваться с 1986 г. на бензинах без свинца .

Информация об удельных выбросах единичного автомобиля с различными типами двигателей необходима для разработки мероприятий по снижению выбросов, тех либо иных веществ. Если в городе или в районе магистралей наблюдается повышенное содержание сажи в воздухе, мероприятия по снижению выбросов должны, в первую очередь, касаться дизельных автомобилей. Оснащение бензиновых двигателей катализаторами значительно уменьшает пробеговый выброс углеводородов и оксидов азота. Следовательно, в городах с большими уровнями загрязнения воздуха этими веществами, как одну из мер снижения выбросов автотранспорта, можно предложить - оснащение катализаторами карбюраторных автомобилей.

Надо отметить, что в зависимости от режима работы двигателя и температуры окружающей среды концентрации загрязняющих веществ в отработавших газах меняются.

Известно, что в городских условиях двигатель автомобиля не может работать на каком-то одном режиме. Учет количественных различий в содержании токсических компонент в выхлопных газах при различных режимах работы автомобильных двигателей имеет особое значение при эксплуатации автомобилей в городе.

Уменьшению загрязнения воздуха выбросами автотранспорта способствует правильная организация движения транспорта на улицах городов. Например, при безостановочном проезде («зеленая волна», развязка на разных уровнях) выбросы оксида углерода и углеводородов на перекрестках снижаются в несколько раз.

Наибольшее количество выбросов оксида углерода и углеводородов поступает в атмосферу при малых скоростях движения автомобиля. При достижении скорости 40 км/час выбросы углеводородов практически не меняются. Выбросы оксида углерода постепенно понижаются с увеличением скорости движения. Минимальное количество окислов азота автомобиль выбрасывает при скорости 60 - 70 км/час.

Наименьшее количество оксида углерода, углеводородов и окислов азота выбрасывается автомобилями при температуре окружающей среды 20°С. С увеличением температуры усиливаются процессы испарения топлива, что приводит к увеличению концентрации вредных веществ в ОГ автомобиля. При уменьшении температуры окружающей среды увеличивается время прогрева двигателя, что приводит к увеличению концентраций вредных веществ в ОГ автомобиля.

Количество автомобилей год от года растет, следовательно для уменьшения выбросов всего парка автомобилей следует уменьшить выбросы каждого автомобиля. Снижение выбросов от автотранспорта обусловлено, в первую очередь, улучшением конструкции двигателей и ужесточением допустимых норм содержания вредных веществ в ОГ. Появилась тенденция уменьшения пороговых выбросов для парка автомобилей США с 1970 г. и в перспективе до 2020 г.

В западных странах с развитым автомобилестроением накоплен определенный опыт решения проблем, связанных с уменьшением загрязнения атмосферного воздуха, рисунок 1 .

Рисунок 1. Блок-схема модели оценки загрязнения воздушной среды ТП

Все мероприятия можно разделить на 3 основные группы. Мероприятия первой группы касаются технических вопросов развития автомобилестроения в стране:

  • - совершенствование существующих двигателей (улучшение системы зажигания, в том числе оснащение бесконтактными системами зажигания);
  • - изменение процессов подачи топлива в цилиндры двигателей, в том числе применение электронного впрыскивания топлива;
  • - обеспечение рециркуляции отработавших газов, а также установка микропроцессорных систем управления двигателями.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ПО
ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Утверждена

приказом Госкомэкологии России

МЕТОДИКА
ОПРЕДЕЛЕНИЯ ВЫБРОСОВ АВТОТРАНСПОРТА
ДЛЯ
ПРОВЕДЕНИЯ СВОДНЫХ РАСЧЕТОВ
ЗАГРЯЗНЕНИЯ
АТМОСФЕРЫ ГОРОДОВ

Москва, 1999

Настоящий документ устанавливает порядок расчета выбросов автотранспорта для их использования при проведении сводных расчетов загрязнения атмосферы городов; может быть применен ко всем категориям автотранспортных средств при эксплуатации в городских условиях. Полученные по настоящему документу результаты используются в качестве исходных данных для проведения сводных расчетов загрязнения атмосферы городов выбросами промышленности и автотранспорта. При разработке данного документа учтены результаты практической оценки выбросов при проведении расчетов загрязнения атмосферы в Государственных комитетах по охране окружающей среды Пермской и Псковской областях, Санкт - Петербурга и Ленинградской области и комитете по охране окружающей среды г. Воронежа, а также их замечания и предложения по совершенствованию методологии оценки выбросов автотранспорта для применения при сводных расчетах загрязнения атмосферы городов.

I . ОБЩИЕ ПОЛОЖЕНИЯ

1.1 . Настоящая методика предназначена для оценки величин выбросов загрязняющих веществ в атмосферу автотранспортными потоками на городских магистралях. 1.2 . Полученные величины выбросов автотранспортных потоков на городских автомагистралях применяются при проведении сводных расчетов загрязнения атмосферного воздуха города (региона) выбросами промышленности и транспорта. 1.3 . В качестве исходных данных для расчета выбросов автотранспорта в атмосферу используются результаты натурных обследований структуры и интенсивности автотранспортных потоков с подразделением по основным категориям автотранспортных средств. 1.4 . Приведенные в данном документе усредненные удельные значения показателей выбросов отражают основные закономерности их изменения при реальном характере автотранспортного движения в городских условиях, определяемых целесообразным выбором передаточного отношения от двигателя к трансмиссии. При этом учитывается, что в городе автомобиль совершает непрерывно разгоны и торможения, перемещаясь с некоторой средней скоростью на конкретном участке автомагистрали, определяемой дорожными условиями. 1.5 . Расчеты выбросов выполняются для следующих вредных веществ, поступающих в атмосферу с отработавшими газами автомобилей: - оксид углерода (СО); - оксиды азота N О x (в пересчете на диоксид азота); - углеводороды (СН) * ; - сажа; - диоксид серы (SO 2); - соединения свинца ** ; - формальдегид; - бенз (а) пирен. * - расчет выбросов соединений свинца для автомобилей, движущихся по городским автомагистралям, производится в том случае, если в данном городе используется этилированный бензин. Рассчитанные значения выбросов соединений свинца целесообразно уточнить с учетом доли этилированного бензина в общем потреблении бензинов всех марок в данном городе. ** - для автомобилей с бензиновыми двигателями при проведении расчетов загрязнения атмосферы используется ПДКм. р. по бензину (код 2704); для автомобилей с дизельным двигателем - по керосину (код 2732) [ 8]. 1.6 . Используемые при расчете выбросов параметры определяются на основе натурных обследований, проведение которых осуществляется по достаточно простой схеме, не требующей инструментального оснащения и продолжительного обучения. Это позволяет выполнять такие работы практически в любом городе с необходимой периодичностью, что весьма важно для регулярной корректировки информации о выбросах автотранспорта в целях поддержания работы компьютерного банка данных о выбросах промышленности и автотранспорта города в оперативном режиме.

II . РАСЧЕТ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ АВТОТРАНСПОРТОМ

Выброс i - го вредного вещества автотранспортным потоком (MLi) определяется для конкретной автомагистрали, на всей протяженности которой, структура и интенсивность автотранспортных потоков изменяется не более, чем на 20 - 25 %. При изменении автотранспортных характеристик на большую величину, автомагистраль разбивается на участки, которые в дальнейшем рассматриваются как отдельные источники. Такая магистраль (или ее участок) может иметь несколько нерегулируемых перекрестков или (и) регулируемых при интенсивности движения менее 400 - 500 а / час. Для автомагистрали (или ее участка) с повышенной интенсивностью движения (т. е. более 500 а / час) целесообразно дополнительно учитывать выброс автотранспорта (Мп) в районе перекрестка. В районе перекрестка выбрасывается наибольшее количество вредных веществ автомобилем за счет торможения и остановки автомобиля перед запрещающим сигналом светофора и последующим его движением в режиме «разгона» по разрешающему сигналу светофора. Это обуславливает необходимость выделить на выбранной автомагистрали участки перед светофором, на которых образуется очередь автомобилей, работающих на холостом ходу в течение времени действия запрещающего сигнала светофора. Таким образом, для автомагистрали (или ее участка) при наличии регулируемого перекрестка суммарный выброс М будет равен:

Где: , , , - выброс в атмосферу автомобилями, находящимися в зоне перекрестка при запрещающем сигнале светофора; , , , - выброс в атмосферу автомобилями, движущимися по данной автомагистрали в рассматриваемый период времени; n и m - число остановок автотранспортного потока перед перекрестком соответственно на одной и другой улицах его образующих за 20- минутный период времени; индексы 1 и 2 соответствуют каждому из 2- х направлений движения на автомагистрали с большей интенсивностью движения, а 3 и 4 - соответственно для автомагистрали с меньшей интенсивностью движения.

II.1 . Расчет выбросов движущегося автотранспорта.

Выброс i - того загрязняющего вещества (г / с) движущимся автотранспортным потоком на автомагистрали (или ее участке) с фиксированной протяженностью L (км) определяется по формуле:

(II .2)

(г / км) - пробеговый выброс i -г o вредного вещества автомобилями k - й группы для городских условий эксплуатации, определяемый по табл. II .1 ; k - количество групп автомобилей; G k (1/ час) - фактическая наибольшая интенсивность движения, т. е. количество автомобилей каждой из К групп, проходящих через фиксированное сечение выбранного участка автомагистрали в единицу времени в обоих направлениях по всем полосам движения; - поправочный коэффициент, учитывающий среднюю скорость движения транспортного потока ( (км / час) на выбранной автомагистрали (или ее участке), определяемый по табл. II .2); - коэффициент пересчета «час» в «сек» ; L (км) - протяженность автомагистрали (или ее участка) из которого исключена протяженность очереди автомобилей перед запрещающим сигналом светофора и длина соответствующей зоны перекрестка (для перекрестков, на которых проводились дополнительные обследования).

Таблица II .1 .

Значения пробеговых выбросов (г / км) для различных групп автомобилей

№ группы

NO х (в пересчете на NO 2)

Формальдегид

Соединения свинца

Бенз (а) пирен

Легковые
Легковые дизельные
Автобусы карбюраторные
Грузовые дизельные
Автобусы дизельные

Таблица II .2 .

Значения коэффициентов , учитывающих изменения количества выбрасываемых вредных веществ в зависимости от скорости движения

Скорость движения (V , км / час)

Примечание: для диоксида азота значение принимается постоянным и равным 1 до скорости 80 км/час.

II.2 Расчет выбросов автотранспорта в районе регулируемого перекрестка

При расчетной оценке уровней загрязнения воздуха в зонах перекрестков следует исходить из наибольших значений содержания вредных веществ в отработавших газах, характерных для режимов движения автомобилей в районе пересечения автомагистралей (торможение, холостой ход, разгон). Выброс i - го загрязняющего вещества (З В) в зоне перекрестка при запрещающем сигнале светофора М 4 п 0 определяется по формуле:

г/мин (II.3)

Где Р (мин.) - продолжительность действия запрещающего сигнала светофора (включая желтый цвет); N Ц - количество циклов действия запрещающего сигнала светофора за 20- минутный период времени; N гр - количество групп автомобилей; (г / мин) - удельный выброс i -г o З В автомобилями, k - ой группы, находящихся в «очереди» у запрещающего сигнала светофора; G k , n - количество автомобилей k группы, находящихся в «очереди» в зоне перекрестка в конце n - го цикла запрещающего сигнала светофора. Значения определяются по табл. II .3 , в которой приведены усредненные значения удельных выбросов (г / мин), учитывающие режимы движения автомобилей в районе пересечения перекрестка (торможение, холостой ход, разгон), а значения Р, N Ц, G k - по результатам натурных обследований.

Таблица II .3 .

Удельные значения выбросов для автомобилей , находящихся в зоне перекрестка

Наименование группы автомобилей

№ группы

Выброс, г / мин

NO x (в пересчете на NO 2)

Формальдегид

Соединения свинца

Бенз (а) пирен

Легковые
Легковые дизельные
Грузовые карбюраторные с грузоподъемностью до 3 т (в том числе работающие на сжиженном нефтяном газе) и микроавтобусы
Грузовые карбюраторные с грузоподъемностью более 3 т (в том числе работающие на сжиженном нефтяном газе)
Автобусы карбюраторные
Грузовые дизельные
Автобусы дизельные
Грузовые газобалонные, работающие на сжатом природном газе
* - значение выброса за вычетом метана

III . ОРГАНИЗАЦИЯ И ПРОВЕДЕНИЕ НАТУРНЫХ ОБСЛЕДОВАНИЙ СТРУКТУРЫ И ИНТЕНСИВНОСТИ АВТОТРАНСПОРТНЫХ ПОТОКОВ НА ОСНОВНЫХ АВТОМАГИСТРАЛЯХ

Для определения выбросов автотранспорта на городских автомагистралях и последующего их использования в качестве исходных данных при проведении расчетов загрязнения атмосферы проводится изучение особенностей распределения автотранспортных потоков (их состава и интенсивности) по городу и их изменений во времени (в течение суток, недели и года). Территориальные различия состава и интенсивности транспортных потоков зависят от площади и поперечных размеров города, количества населения, схемы планировки улично - дорожной сети, особенностей расположения промышленных предприятий, автохозяйств, бензозаправочных станций и станций техобслуживания. Временные различия в значительной степени связаны с режимом работы промышленных предприятий и учреждений города и с климатическими особенностями района, в котором расположен город. III .1 . На основе изучения схемы улично - дорожной сети города, а также информации о транспортной нагрузке составляется перечень основных автомагистралей (и их участков) с повышенной интенсивностью движения и перекрестков с высокой транспортной нагрузкой. В качестве таких магистралей (участков) рассматриваются: - для городов с населением до 500 тысяч человек - магистрали (или их участки) с интенсивностью движения в среднем более 200 - 300 автомобилей в час; - для городов с населением более 500 тыс. человек - магистрали (или их участки) с интенсивностью движения в среднем более 400 - 500 автомобилей в час. Выбранные автомагистрали (или их участки) и перекрестки наносятся на карту - схему города (с учетом масштаба карты). На этой карте фиксируются и перекрестки, на которых предполагается проведение дополнительных обследований. III .2 . Для определения характеристик автотранспортных потоков на выбранных участках улично - дорожной сети проводится учет проходящих автотранспортных средств в обоих направлениях с подразделением по следующим группам: I . Л - легковые, из них отдельно легковые и легковые дизельные автомобили; II . ГК < 3 - грузовые карбюраторные грузоподъемностью менее 3 тонн и микроавтобусы (ГАЗ -51-53, УАЗы, «Газель» , РАФ и др.); III . ГК > 3 - грузовые карбюраторные грузоподъемностью более 3 тонн (ЗИЛы, Урал и др.); IV . АК - автобусы карбюраторные (ПАЗ, ЛАЗ, ЛИАЗ); V . ГД - грузовые дизельные (КРАЗ, КАМАЗ); VI . АД - автобусы дизельные (городские и интуристовские «Икарусы»); VII . ГГБ - грузовые газобалонные, работающие на сжатом природном газе. III .3 . Подсчет проходящих по данному участку автомагистрали транспортных средств проводится в течение 20 минут каждого часа. При высокой интенсивности движения (более 2 - 3 тыс. автомашин в час) подсчет проходящих автотранспортных средств проводится синхронно раздельно по каждому направлению движения (а при недостаточности числа наблюдателей - первые 20 минут - в одном направлении; следующие 20 минут - в противоположном направлении). III .4 . Для выявления максимальной транспортной нагрузки наблюдения выполняются в часы «пик» . Для большинства городских автомагистралей отмечается два максимума: утренний и вечерний (соответственно с 7 - 8 часов до 10 до 11 часов и с 16 - 17 часов до 19 - 20 часов), для многих транзитных автомагистралей наибольшая транспортная нагрузка характерна для дневного времени суток. С целью получения исходных данных о выбросах для проведения сводных расчетов загрязнения атмосферы города наблюдения организуются в часы «пик» летнего сезона года. Натурные обследования состава и интенсивности движущегося автотранспортного потока проводятся не менее 4 - 6 раз в часы «пик» на каждой автомагистрали. III .5 . Результаты натурных обследований структуры и интенсивности движущегося автотранспортного потока заносятся в полевой журнал по форме, приведенной в таблице III .1 .

Таблица III .1 .

ПОЛЕВОЙ ЖУРНАЛ
обследования характеристик движущегося автотранспортного потока

Время подсчета, за период 20 минут

Число автомобилей по группам

Скорость движения потока, км / час

Легковые

Легковые дизельные

ГК < 3, МА

Легко вые

Грузовые

Автобусы

III .6 . Для оценки транспортной нагрузки в районе регулируемых перекрестков проводятся дополнительные обследования. III .6.1 . Последовательно (а при возможности одновременно) на каждом направлении движения в период действия запрещающего сигнала светофора (включая и желтый цвет) выполняется подсчет автотранспортных средств (по группам, согласно п. III .2), образующих «очередь» . Одновременно фиксируется длина «очереди» в метрах. Подсчеты проводятся не менее 4 - 6 раз в периоды, указанные в п. III .4 . III .6.2 . Результаты дополнительных обследований заносятся в полевой журнал по форме, приведенной в табл. III .2 .

Таблица III .2

ПОЛЕВОЙ ЖУРНАЛ
обследования
автотранспортных потоков на перекрестках

Время работы запрещающего сигнала светофора, мин.

Число автомобилей по группам

Длина очереди автотранспорта (м)

Легковые

Легковые дизельные

ГК < 3 , МА

III .7 . В ходе проведения натурных обследований дополнительно определяется ряд параметров, необходимых как для расчета выбросов согласно п. II настоящего документа, так и проведения расчетов загрязнения атмосферы. III .7.1 . На каждой автомагистрали (или ее участке) фиксируются следующие параметры: - ширина проезжей части, (в метрах); - количество полос движения в каждом направлении; - протяженность выбранного участка автомагистрали (в км) с указанием названий улиц, ограничивающих данную автомагистраль (или ее участок); - средняя скорость автотранспортного потока с подразделением на три основные категории: легковые, грузовые и автобусы (в км / час) (определяется по показаниям спидометра автомобиля, движущегося в автотранспортном потоке). Определение средней скорости движения основных групп автотранспортного потока выполняется по всей протяженности обследуемой автомагистрали или ее участка, включая зоны нерегулируемых перекрестков и регулируемых перекрестков, выбранных согласно раздела I настоящего документа. III .7.2 . На обследуемом перекрестке фиксируются следующие параметры: - ширина проезжей части (в метрах); - количество полос движения в каждом направлении; - протяженность зоны перекрестка в каждом направлении (в метрах). III .7.3 . К полевым журналам по формам таблиц III .1 и III .2 прилагаются схемы расположения обследуемых автомагистралей и перекрестков с регулируемым движением.

ЛИТЕРАТУРА

1 . Методические рекомендации по инвентаризации и нормированию выбросов автотранспорта в Санкт - Петербурге. С - Пб., 1995. 2 . Ложкин В. Н., Демочка О. И. и др. Экспериментально - расчетная оценка выбросов вредных веществ с отработавшими газами ДВС на эксплуатационных режимах работы. Технический отчет по НИР. С - Пб., НПО ЦНИТА, 1990. 3 . Жегалин О. И., Лупачев П. Д. Снижение токсичности автомобильных двигателей. М., Транспорт, 1985. 4 . Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу автотранспортных предприятий (расчетным методом). М., 1998. 5 . Методика определения массы выбросов загрязняющих веществ автотранспортными средствами в атмосферный воздух. М., 1993. 6 . Методика расчета выбросов загрязняющих веществ автотранспортом на городских магистралях. М., 1997. 7 . Сравнительная оценка методик расчета выбросов от автотранспорта и возможностей их использования при проведении комплексных оценок рассеивания загрязняющих веществ. Отчет по теме. Пермский Гос. университет. 1998. 8 . Перечень и коды веществ, загрязняющих атмосферный воздух. С. Петербург, 1998.

Выбросы в атмосферу.

1. Автомобильный транспорт является крупнейшим загрязнителем окружающей среды и, в первую очередь, атмосферного воздуха. Снижение выбросов загрязняющих атмосферу веществ осуществляется по следующим направлениям:

а) через поэтапную замену автопарка более современными моделями автомобилей, обеспечивающими экологически безопасные нормы выбросов загрязняющих веществ в атмосферу (применение впрыска топлива с электронным управлением; применение каталитических нейтрализаторов);

б) через производство качественных сортов топлива (с низким содержанием серы, бензола, углеводородов);

в) через модернизацию эксплуатируемых автомобилей (установка оборудования для работы двигателей на газовом топливе);

г) через поддержание установленных ГОСТами норм выбросов загрязняющих веществ в атмосферу в процессе эксплуатации автомобилей.

2. Приведение экологических показателей выпускаемых автомобилей в соответствие с международными нормами на основе Правил ЕЭК ООН (Женевское соглашение 1958 года) и Соглашения с Европейским Союзом (1994 год), планируется произвести:

– с 2006 года – на экологический класс 2;

– с 2008 года – на экологический класс 3;

– с 2010 года – на экологический класс 4;

– с 2014 года – на экологический класс 5.

Данные сроки перехода автомобильной промышленности на экологические стандарты установлены постановлением Правительства РФ № 609 от 12 октября 2005 года «Об утверждении технического регламента «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ».

В соответствии с постановлением Правительства РФ 20 января 2012 г. № 2 «О внесении изменений в пункт 13 технического регламента «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ»» действие одобрений типа транспортного средства и сертификатов соответствия в отношении автомобильной техники экологического класса 4 и сертификатов соответствия в отношении двигателей внутреннего сгорания экологического класса 4 ограничивается сроком до 31 декабря 2015 г. включительно.

3. Справка. Переход Европейского Союза на автотранспорт с нормативными экологическими показателями осуществлялся:

на Евро-3 – с 2000 года;

на Евро-4 – с 2005 года;

на Евро-5 – с 2009 года.

4. Повышенные экологические требования к моторным топливам регламентируются Техническим регламентом «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту», утвержденному постановлением Правительства РФ № 118 от 27.02.2008 года.

В соответствии с данным техническим регламентом выпуск в оборот автомобильного бензина и дизельного топлива допускается в отношении:

— класса 2 — до 31 декабря 2012 г.;
— класса 3 — до 31 декабря 2014 г.;
— класса 4 — до 31 декабря 2015 г.;
— класса 5 — срок не ограничен.

5. Установка оборудования для работы двигателей на газовом топливе производится на основании руководящего документа РД 3112199-1094-03 «Руководство по организации эксплуатации газобаллонных автомобилей, работающих на сжиженном нефтяном газе» и руководящего документа РД 03112194-1095-03 «Руководство по организации эксплуатации газобаллонных автомобилей, работающих на компримированном природном газе».

Оба документа утверждены Департаментом автотранспорта Министерства транспорта РФ.

6. В процессе эксплуатации автомобилей выбросы загрязняющих веществ регламентированы следующими ГОСТами:

– ГОСТом Р 52033-2003 «Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами»;

– ГОСТом Р 17.2.2.06-99 «Атмосфера. Нормы и методы измерения содержания оксида углерода и углеводородов в отработавших газах газобаллонных автомобилей»;

– ГОСТом Р 52160-2003 «Автотранспортные средства, оснащенные двигателями с воспламенением от сжатия. Дымность отработавших газов».

Автотранс-консультант.ру.