В россии растет количество выбросов от автотранспорта. Загрязняющие вещества от выхлопов газа автомобильного транспорта Выбросы от бензина в атмосферу

Выбросы в атмосферу.

1. Автомобильный транспорт является крупнейшим загрязнителем окружающей среды и, в первую очередь, атмосферного воздуха. Снижение выбросов загрязняющих атмосферу веществ осуществляется по следующим направлениям:

а) через поэтапную замену автопарка более современными моделями автомобилей, обеспечивающими экологически безопасные нормы выбросов загрязняющих веществ в атмосферу (применение впрыска топлива с электронным управлением; применение каталитических нейтрализаторов);

б) через производство качественных сортов топлива (с низким содержанием серы, бензола, углеводородов);

в) через модернизацию эксплуатируемых автомобилей (установка оборудования для работы двигателей на газовом топливе);

г) через поддержание установленных ГОСТами норм выбросов загрязняющих веществ в атмосферу в процессе эксплуатации автомобилей.

2. Приведение экологических показателей выпускаемых автомобилей в соответствие с международными нормами на основе Правил ЕЭК ООН (Женевское соглашение 1958 года) и Соглашения с Европейским Союзом (1994 год), планируется произвести:

– с 2006 года – на экологический класс 2;

– с 2008 года – на экологический класс 3;

– с 2010 года – на экологический класс 4;

– с 2014 года – на экологический класс 5.

Данные сроки перехода автомобильной промышленности на экологические стандарты установлены постановлением Правительства РФ № 609 от 12 октября 2005 года «Об утверждении технического регламента «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ».

В соответствии с постановлением Правительства РФ 20 января 2012 г. № 2 «О внесении изменений в пункт 13 технического регламента «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ»» действие одобрений типа транспортного средства и сертификатов соответствия в отношении автомобильной техники экологического класса 4 и сертификатов соответствия в отношении двигателей внутреннего сгорания экологического класса 4 ограничивается сроком до 31 декабря 2015 г. включительно.

3. Справка. Переход Европейского Союза на автотранспорт с нормативными экологическими показателями осуществлялся:

на Евро-3 – с 2000 года;

на Евро-4 – с 2005 года;

на Евро-5 – с 2009 года.

4. Повышенные экологические требования к моторным топливам регламентируются Техническим регламентом «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту», утвержденному постановлением Правительства РФ № 118 от 27.02.2008 года.

В соответствии с данным техническим регламентом выпуск в оборот автомобильного бензина и дизельного топлива допускается в отношении:

— класса 2 — до 31 декабря 2012 г.;
— класса 3 — до 31 декабря 2014 г.;
— класса 4 — до 31 декабря 2015 г.;
— класса 5 — срок не ограничен.

5. Установка оборудования для работы двигателей на газовом топливе производится на основании руководящего документа РД 3112199-1094-03 «Руководство по организации эксплуатации газобаллонных автомобилей, работающих на сжиженном нефтяном газе» и руководящего документа РД 03112194-1095-03 «Руководство по организации эксплуатации газобаллонных автомобилей, работающих на компримированном природном газе».

Оба документа утверждены Департаментом автотранспорта Министерства транспорта РФ.

6. В процессе эксплуатации автомобилей выбросы загрязняющих веществ регламентированы следующими ГОСТами:

– ГОСТом Р 52033-2003 «Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами»;

– ГОСТом Р 17.2.2.06-99 «Атмосфера. Нормы и методы измерения содержания оксида углерода и углеводородов в отработавших газах газобаллонных автомобилей»;

– ГОСТом Р 52160-2003 «Автотранспортные средства, оснащенные двигателями с воспламенением от сжатия. Дымность отработавших газов».

Автотранс-консультант.ру.

Угарный газ и оксиды азота, столь интенсивно выделяемые на первый взгляд невинным голубоватым дымком глушителя автомобиля – вот одна из основных причин головных болей, усталости, немотивированного раздражения, низкой трудоспособности. Сернистый газ способен воздействовать на генетический аппарат, способствуя бесплодию и врожденным уродствам, а все вместе эти факторы ведут к стрессам, нервным проявлениям, стремлению к уединению, безразличию к самым близким людям. В больших городах также более широко распространены заболевания органов кровообращения и дыхания, инфаркты, гипертония и новообразования. По расчетам специалистов, «вклад» автомобильного транспорта в атмосферу составляет до 90% по оксиду углерода и 70 % по оксиду азота. Автомобиль также добавляет в почву и воздух тяжелые металлы и другие вредные вещества.

Основными источниками загрязнения воздушной среды автомобилей являются отработавшие газы ДВС, картерные газы, топливные испарения.

Двигатель внутреннего сгорания – это тепловой двигатель, в котором химическая энергия топлива преобразуется в механическую работу. По виду применяемого топлива ДВС подразделяют на двигатели, работающие на

бензине, газе и дизельном топливе. По способу воспламенения горючие смеси ДВС бывают с воспламенением от сжатия (дизели) и с воспламенением от искровой свечи зажигания.

Дизельное топливо представляет собой смесь углеводородов нефти с температурами кипения от 200 до 3500С. Дизельное топливо должно иметь определенную вязкость и самовоспламеняемость, быть химически стабильным, при сгорании иметь минимальную дымность и токсичность. Для улучшения этих свойств в топлива вводят присадки, антидымные или многофункциональные.

Образование токсичных веществ – продуктов неполного сгорания и оксидов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания – расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания. Реакция образования оксидов азота носит термический характер и не связана непосредственно с реакциями окисления топлива. Поэтому рассмотрение механизма образования данных токсичных веществ целесообразно вести раздельно.

К основным токсичным выбросам автомобиля относятся:

отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат оксид углерода (СО), углеводороды (СХHY), оксиды азота (NOX), бенз(а)пирен, альдегиды и сажу. Картерные газы – это смесь части отработавших газов, проникшей

через неплотности поршневых колец в картер двигателя, с парами моторного масла. Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95 % СО, 55 % СХHY и 98 % NOX, картерные газы по – 5 % СХHY, 2 % NOX, а топливные испарения – до 40 % СХHY.

внутреннего сгорания представлено в табл.3.1.

Таблица 3.1

Компоненты

Доля токсичного компонента в ОГ ДВС

Карбюраторные

Дизельные

топлива, кг

топлива, кг

Бенз(а)пирен

до 10 мкг/м3

Альдегиды

до 0,04 г/м3

В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О2, О3, С, СО, СО2, СН4, CnHm, CnHmО, NO, NO2, N, N2, NH3, HNO3, HCN, H, H2, OH, H2O.

Основными токсичными веществами – продуктами неполного сгорания

являются сажа, оксид углерода, углеводороды, альдегиды.

Вредные токсичные выбросы можно разделить на регламентированные и нерегламентированные. Они действуют на организм человека по-разному. Вредные токсичные выбросы: СО, NOX, CXHY, RXCHO, SO2, сажа, дым.

СО (оксид углерода) – этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки,

плохого распыления топлива и диссоциации СО2 на СО и О2 при высоких температурах.

Во время работы дизеля концентрация СО незначительна (0,1…0,2 %).

У карбюраторных двигателей при работе на холостом ходу и малых нагрузках содержание СО достигает 5…8 % из-за работы на обогащенных

смесях. Это достигается для того, чтобы при плохих условиях смесеобразование обеспечить требуемое для воспламенения и сгорания

число испарившихся молекул.

NOX (оксиды азота) – самый токсичный газ из ОГ.

N2 (азот) – инертный газ при нормальных условиях. Активно реагирует

с кислородом при высоких температурах.

Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно

увеличивается выброс оксидов азота.

Кроме того, температура в зоне горения (камера сгорания) во многом зависит от состава смеси. Слишком обедненная или обогащенная смесь при горении выделяет меньшее количество теплоты, процесс сгорания

замедляется и сопровождается большими потерями теплоты в стенке, т.е. в таких условиях выделяется меньшее количество NOx, а выбросы растут, когда состав смеси близок к стехиометрическому (1 кг топлива к 15 кг воздуха). Для дизельных двигателей состав NOx зависит от угла опережения впрыска топлива и периода задержки воспламенения топлива. С увеличением угла опережения впрыска топлива удлиняется период задержки воспламенения, улучшается однородность топливовоздушной смеси, большее количество топлива испаряется, и при сгорании резко (в 3 раза) увеличивается температура, т.е. увеличивается количество NOx.

Кроме того, с уменьшением угла опережения впрыска топлива можно

существенно снизить выделение оксидов азота, но при этом значительно ухудшаются мощностные и экономические показатели.

Углеводороды (СxНy) – этан, метан, бензол, ацетилен и др. токсичные элементы. ОГ содержат около 200 разных углеводородов.

В дизельных двигателях СxНy образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления.

ДВС выбрасывает большее количество СxНy, когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

Дым – непрозрачный газ. Дым может быть белым, синим, черным.

Цвет зависит от состояния ОГ.

Белый и синий дым – это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей

конденсации.

Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны

синего цвета, то глаз воспринимает дым как белый.

К факторам, определяющим возникновение белого и синего дыма, а также его запах в ОГ, относятся температура двигателя, метод образования

смеси, топливные характеристики (цвет капли зависит от температуры ее образования: при увеличении температуры топлива дым приобретает синий цвет, т.е. уменьшается размер капли).

Кроме того, бывает синий дым от масла.

Наличие дыма показывает, что температура недостаточна для полного сгорания топлива.

Черный дым состоит из сажи.

Дым отрицательно влияет на организм человека, животных и растительность.

Сажа – представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3...100 мкм.

Причина образования сажи заключается в том, что энергетические

условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом.

Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

Количество сажи зависит от температуры в зоне сгорания.

Существуют другие факторы образования сажи – зоны обогащенной смеси и зоны контакта топлива с холодной стенкой, а также неправильная

турбулизация смеси.

Скорость сжигания сажи зависит от размера частиц, например, сажа сжигается полностью при размере частиц меньше 0,01 мкм.

SO2 (оксид серы) – образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

SO2,H2S – очень опасны для растительности.

Главным загрязнителем атмосферного воздуха свинцом в Российской

Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87 % общей эмиссии свинца по различным

оценкам. РbО (оксиды свинца) – возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин, чтобы увеличить октановое число для уменьшения детонации (это очень быстрое, взрывное сгорание

отдельных участков рабочей смеси в цилиндрах двигателя со скоростью распространения пламени до 3000 м/с, сопровождающееся значительным повышением давления газов). При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5...0,85 кг оксидов

свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль

автотрасс с интенсивным движением. Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта – отказ от использования этилированных бензинов. По данным

1995г. 9 из 25 нефтеперерабатывающих заводов России перешли на выпуск

неэтилированных бензинов. В 1997 году доля неэтилированного бензина в общем объеме производства составила 68%. Однако, из-за финансовых и организационных трудностей полный отказ от производства этилированных бензинов в стране задерживается.

Альдегиды (RxCHO) – образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

При сжигании топлива при высоких температурах альдегиды исчезают.

Загрязнение воздуха идет по трем каналам: 1) ОГ, выбрасываемые через выхлопную трубу (65 %); 2) картерные газы (20 %); 3) углеводороды в

результате испарения топлива из бака, карбюратора и трубопроводов (15 %).

Каждый автомобиль выбрасывает в атмосферу с отработавшими газами около 200 различных компонентов. Самая большая группа соединений –

углеводороды. Эффект падения концентраций атмосферных загрязнений, то есть приближение к нормальному состоянию, связан не только с

разбавлением выхлопных газов воздухом, но и со способностью самоочищения атмосферы. В основе самоочищения лежат различные физические, физико-химические и химические процессы. Выпадение

тяжелых взвешенных частиц (седиментация) быстро освобождает атмосферу только от грубых частиц. Процессы нейтрализации и связывания газов в атмосфере проходят гораздо медленнее. Значительную роль в этом играет

зеленая растительность, поскольку между растениями идет интенсивный газообмен. Скорость газообмена между растительным миром в 25…30 раз превышает скорость газообмена между человеком и ОС в расчете на единицу массы активно функционирующих органов. Количество атмосферных

осадков оказывает сильное влияние на процесс восстановления. Они растворяют газы, соли, адсорбируют и осаждают на земную поверхность пылевидные частицы.

Автомобильные выбросы распространяются и трансформируются в атмосфере по определенным закономерностям.

Так, твердые частицы размером более 0,1 мм оседают на

подстилающих поверхностях в основном из-за действия гравитационных сил.

Частицы, размер которых менее 0,1 мм, a также газовые примеси в виде CO, СХНУ, NOX, SOX распространяются в атмосфере под воздействием процессов диффузии. Они вступают в процессы физико-химического взаимодействия между собой и с компонентами атмосферы, и их действие проявляется на локальных территориях в пределах определенных регионов.

В этом случае рассеивание примесей в атмосфере является неотъемлемой частью процесса загрязнения и зависит от многих факторов.

Степень загрязнения атмосферного воздуха выбросами объектов АТК

зависит от возможности переноса рассматриваемых загрязняющих веществ на значительные расстояния, уровня их химической активности,

метеорологических условий распространения.

Компоненты вредных выбросов с повышенной реакционной способностью, попадая в свободную атмосферу, взаимодействуют между

собой и компонентами атмосферного воздуха. При этом различают физическое, химическое и фотохимическое взаимодействия.

Примеры физического реагирования: конденсация паров кислот во влажном воздухе с образованием аэрозоля, уменьшение размеров капель жидкости в результате испарения в сухом теплом воздухе. Жидкие и твердые

частицы могут объединяться, адсорбировать или растворять газообразные вещества.

Реакции синтеза и распада, окисления и восстановления осуществляются между газообразными компонентами загрязняющих веществ

и атмосферным воздухом. Некоторые процессы химических преобразований начинаются непосредственно с момента поступления выбросов в атмосферу, другие – при появлении для этого благоприятных условий – необходимых

реагентов, солнечного излучения, других факторов.

При выполнении транспортной работы существенным является выброс соединений углерода в виде CO и СХНУ.

Моноксид углерода в атмосфере быстро диффундирует и обычно не создает высокой концентрации. Его интенсивно поглощают почвенные микроорганизмы; в атмосфере он может окисляться до СО2 при наличии примесей - сильных окислителей (О,О3), перекисных соединений и свободных радикалов.

Углеводороды в атмосфере подвергаются различным превращениям (окислению, полимеризации), взаимодействуя с другими атмосферными загрязнениями, прежде всего под действием солнечной радиации. В результате этих реакций образуются перекиси, свободные радикалы, соединения с оксидами азота и серы.

В свободной атмосфере сернистый газ (SО2) через некоторое время окисляется до сернистого ангидрида (SО3) или вступает во взаимодействие с другими соединениями, в частности углеводородами. Окисление сернистого ангидрида в серный происходит в свободной атмосфере при фотохимических и каталитических реакциях. В обоих случаях конечным продуктом является аэрозоль или раствор серной кислоты в дождевой воде.

B сухом воздухе окисление сернистого газа происходит крайне медленно. В темноте окисления SO2 не наблюдается. При наличии в воздухе оксидов азота скорость окисления сернистого ангидрида увеличивается независимо от влажности воздуха.

Сероводород и сероуглерод при взаимодействии с другими загрязнителями подвергаются в свободной атмосфере медленному окислению до серного ангидрида. Сернистый ангидрид может адсорбироваться на поверхности твердых частиц из оксидов металлов, гидрооксидов или карбонатов и окисляться до сульфата.

Соединения азота, поступающие в атмосферу от объектов АТК, представлены в основном NO и NO2. Выделяемый в атмосферу моноксид азота под воздействием солнечного света интенсивно окисляется атмосферным кислородом до диоксида азота. Кинетика дальнейших превращений диоксида азота определяется его способностью поглощать

ультрафиолетовые лучи и диссоциировать на моноксид азота и атомарный кислород в процессах фотохимического смога.

Фотохимический смог – это комплексная смесь, образующаяся при воздействии солнечного света из двух основных компонентов выбросов автомобильных двигателей – NO и углеводородных соединений. Другие

вещества (SO2), твердые частицы также могут участвовать в смоге, но не являются основными носителями высокого уровня окислительной активности, характерной для смога. Стабильные метеорологические условия благоприятствуют развитию смога:

Городские эмиссии удерживаются в атмосфере в результате инверсии,

Служащей своеобразной крышкой на сосуде с реактивами,

Увеличивая продолжительность контакта и реакции,

Препятствуя рассеиванию (новые эмиссии и реакции добавляются к первоначальным).

Рис.3.1. Фотохимический смог

Формирование смога и образование оксиданта обычно останавливается при прекращении солнечной радиации в темное время суток и дисперсии реагентов и продуктов реакции.

В Москве при обычных условиях концентрация тропосферного озона,

который является предвестником образования фотохимического смога, достаточно низкая. Оценки показывают, что генерация озона из оксидов азота и углеводородных соединений вследствие переноса воздушных масс и повышение его концентрации, и следовательно, неблагоприятное воздействие происходит на расстоянии 300…500 км от Москвы (в районе Нижнего Новгорода).

Помимо метеорологических факторов самоочищения атмосферы

некоторые компоненты вредных выбросов автомобильного транспорта участвуют в процессах взаимодействия с компонентами воздушной среды, результатом которых является возникновение новых вредных веществ (вторичные атмосферные загрязнители). Загрязнители вступают с компонентами атмосферного воздуха в физическое, химическое и фотохимическое взаимодействия.

Многообразие продуктов выхлопов автомобильных двигателей может быть классифицировано по группам, сходным по характеру воздействия на организмы или химической структуре и свойствам:

1) нетоксичные вещества: азот, кислород, водород, водяной пар и углекислый газ, содержание которых в атмосфере в обычных условиях не достигает уровня, вредного для человека;

2) моноксид углерода, наличие которого характерно для выхлопов бензиновых двигателей;

3) оксиды азота (~98 % NО, ~2 % NO2), которые по мере пребывания в атмосфере соединяются с кислородом;

4) углеводороды (алкаин, алкены, алкадиены, цикланы, ароматические соединения);

5) альдегиды;

7) соединения свинца.

8) серистый ангидрид.

Чувствительность населения к действию загрязнения атмосферы зависит от большого числа факторов, в том числе от возраста, пола, общего состояния здоровья, питания, температуры и влажности и т.д. Лица пожилого

возраста, дети, больные, курильщики, страдающие хроническим бронхитом,

коронарной недостаточностью, астмой, являются более уязвимыми.

Общая схема реакции организма на воздействие загрязнителей ОС по данным Всемирной организации здравоохранения (ВОЗ) представлена на

рис.3.2.

Рис. 3.2. Реакция организма на воздействие загрязнителей воздуха:

1 – смертность; 2 – заболеваемость; 3 – физиологические признаки заболевания; 4 – сдвиги жизнедеятельности организма неизвестного

назначения; 5 – накопление загрязнений в органах и тканях.

Проблема состава атмосферного воздуха и его загрязнения от выбросов автотранспорта становится все более актуальной. Это можно проследить уже

на примере Москвы. В 1982 г. вклад автотранспортных средств в суммарное загрязнение атмосферы составлял 69 %, в 1990 г. – 74,6 %, в 1993 г. – 79,6 % и т.д.

Среди факторов прямого действия (все, кроме загрязнения окружающей среды) загрязнение воздуха занимает, безусловно, первое

место, поскольку воздух – продукт непрерывного потребления организма.

Дыхательная система человека имеет ряд механизмов, помогающих защитить организм от воздействия загрязнителей воздуха. Волоски в носу отфильтровывают крупные частицы. Липкая слизистая оболочка в верхней

части дыхательного тракта захватывает мелкие частицы и растворяет некоторые газовые загрязнители. Механизм непроизвольного чихания и кашля удаляет загрязненные воздух и слизь при раздражении дыхательной

Тонкие частицы представляют наибольшую опасность для здоровья человека, так как способны пройти через естественную защитную оболочку в

легкие. Вдыхание озона вызывает кашель, одышку, повреждает легочные ткани и ослабляет иммунную систему.

Влияние загрязнения воздуха на здоровье населения состоит в

следующем.

Взвешенные частицы. Частицы пыли размером от 0,01 до 100 мкм классифицируются следующим образом: более 100 мкм – осаждающиеся,

менее 5 мкм – практически неосаждающиеся.

Частицы первого типа безвредны, поскольку быстро осаждаются либо на поверхности земли, любо в верхних дыхательных путях. Частицы второго типа попадают глубоко в легкие. Установлено присутствие соединений

углерода, углеводорода, парафина, ароматических веществ, мышьяка, ртути и др. в легких вследствие проникновения пыли, a также связь с частотой заболевания раком, хроническим заболеванием дыхательных путей, астмой,

бронхитом, эмфиземой легких. Резкое увеличение частоты хронических бронхитов начинается с концентрации 150 – 200 мг/м3. При попадании в дыхательные пути сажи, возникают хронические заболевания (размеры твердых частиц 0.5…2 мкм), ухудшается видимость, а также сажа абсорбирует на своей поверхности сильнейшие канцерогенные вещества (бенз(а)пирен), что опасно для человеческого организма. Норма сажи в ОГ составляет 0.8 г/м3.

Сернистый ангидрид. Оказывает пагубное влияние на слизистую оболочку верхних дыхательных путей, вызывает бронхиальную закупорку. Начиная с 500 мг/м3 у больных бронхитом наблюдаются осложнения, 200 мг/м3 вызывает увеличение приступов у астматиков.

Оксиды азота. Диоксид азота и фитохимические производные являются побочными продуктами нефтехимических производств и рабочих процессов дизельных двигателей. Оказывают влияние на легкие и на органы зрения. Начиная с 150 мг/м3, при длительных воздействиях происходит нарушение дыхательных функций Оксиды азота раздражают слизистую оболочку глаз и носа, разрушают легкие. В дыхательных путях оксиды азота реагируют с

влагой, которая находится в этом месте. Оксиды азота способствуют разрушению озонового слоя.

Считается, что токсичность NOx больше в 10 раз, чем СО. N2O

действует как наркотик. Норма NOx в воздухе – 0,1 мг/м3.

Озон. Повышение концентрации оксидов азота и углеводородов под

действием солнечной радиации порождает фотохимический смог (озон, ПАН и др.) Фоновая концентрация озона в природе 20…40 мг/м3. При 200 мг/м3 наблюдается заметное негативное воздействие на организм человека.

Моноксид углерода. При сжигании топлива в условиях недостатка

воздуха, CO генерируется в процессе работы автомобильных двигателей. Соединяясь с гемоглобином (Нb), из вдыхаемого воздуха попадает в кровь, препятствуя насыщению крови кислородом, а следовательно, и тканей, мышц, мозга. При концентрации 20…40 мг/м3 в течение 1 часа содержание НbСО в крови повышается на 2…3 %, что вызывает ослабление зрения, ориентации в пространстве, реакций. СО вызывает нарушение нервной системы, головную боль, похудение, рвоту.

Диспансерные исследования Института экологии человека и гигиены окружающей среды им. А. Н. Сысина РАМН показали, что длительное вдыхание воздуха, содержащего моноксид углерода в концентрациях 3…6

ПДК и диоксид азота 2…3 ПДК, вызывает в детском организме ряд ответных реакций. Установлены удлинение времени латентного периода зрительно –

моторной реакции, хронический тонзиллит, хронический ринит, гипертрофия миндалин, снижение жизненной емкости легких.

Основными представителями альдегидов, поступающих в атмосферный воздух с выбросами автомобилей, являются формальдегид и

акролеин. Действие формальдегида характеризуется раздражающим эффектом по отношению к нервной системе. Он поражает внутренние органы и анактивирует ферменты, нарушает обменные процессы в клетке путем

подавления цитоплазматического и ядерного синтеза. Именно RxCHO

определяют запах ОГ.

Биологическое действие фотооксидантов (смесь озона, диоксида азота и формальдегида) на клеточном уровне подобно действию радиации,

вызывает цепную реакцию клеточных повреждений.

Углеводороды (СxНy) имеют неприятные запахи. СxНy раздражают глаза, нос и очень вредны для флоры и фауны. СxНy от паров бензина также токсичные, допускается 1,5 мг/м3 в день.

Оксиды свинца накапливаются в организме человека, попадая в него через животную и растительную пищу. Свинец и его соединения относятся к классу высокотоксичных веществ, способных причинить ощутимый вред здоровью человека. Свинец влияет на нервную систему, что приводит к снижению интеллекта, а также вызывает изменения физической активности, координации, слуха, воздействует на сердечно-сосудистую систему, приводя к заболеваниям сердца. Свинцовое отравление (сатурнизм) занимает первое место среди профессиональных интоксикаций.

от расстояния растения до дороги. Норма Рb в Европе – 10 мг Рb в 1 кг травы.

Современные исследования в области влияния состояния атмосферного воздуха на здоровье населения можно характеризовать табл.3.2.

Влияние кратности превышения ПДК на здоровье людей

Таблица 3.2

Кратность

превышения

Ответ состояния здоровья населения

Нет изменений в состоянии здоровья

Изменение состояния здоровья по некоторым

Выраженные функциональные сдвиги

Рост специфической и неспецифической заболеваемости

Острые отравления

Летальные отравления

Значительная масса вредных выбросов, рассеянных в атмосфере,

является результатом работы автомобиле.

Вредные выбросы – это вещества, поступившие в атмосферу из агрегатов и систем автомобиля. В атмосферу поступают вещества из систем двигателя: картерные выбросы из системы смазки и вентиляции картера, топливные испарения из системы питания топливом, отработавшие газы – смесь газов с примесью взвешенных частиц, удаляемых из цилиндров или камер сгорания через систему выпуска, а также топливный бак и агрегаты трансмиссии.

Они характеризуются токсичностью вредных выбросов (ВВ) и дымностью отработавших газов(ОГ).

Токсичность выбросов двигателя – способность выбросов оказывать

вредное воздействие на людей и животный мир. Вредное воздействие оказывают оксид углерода СО, углеводороды СН и оксиды азота NOх.

Дымность отработавших газов двигателя - показатель,

характеризующий степень поглощения светового потока, просвечивающего отработавшие газы. Нормируемым параметром дымности является оптическая плотность отработавших газов количество поглощенного света частицами сажи и другими светопоглощающими дисперсными частицами отработавших газов автотракторных дизелей, определяемое по шкале измерительного прибора.

В США, например, доля выбросов токсичных соединений в атмосферу автомобилей составляет 60 %, а в странах Западной Европы – до 40 %.

Отработавшие газы, смешиваясь с туманом, образуют плотную завесу смога, против которого не найдено еще средств. В дни смога резко

увеличивается число аллергических заболеваний, инсультов, нервных припадков.

Под действием солнечных лучей углеводороды и оксиды азота, содержащиеся в атмосфере, вступают в фотохимическую реакцию, образуя соединения, вызывающие резь в глазах. Особенно велик уровень загазованности в местах скопления автомобилей (тракторов).

Следует отметить, что в настоящее время по дорогам мира движутся более 300 млн автомобилей, которые потребляют около 3,5 млрд кг топлива

на каждые 100 км пробега, а при сгорании 1 кг топлива в двигателе выделяется 446 г СО и около 16 г оксидов азота.

Доля загрязнения воздуха отработавшими газами составляет 65 %,

газами, выделяемыми из картера двигателя, 20 %, из карбюратора 9 % и из топливного бака 6 %.

Проблема защиты окружающей среды от отрицательного воздействия

автомобилей связана прежде всего со снижением выбросов токсичных веществ ДВС.

Предельные концентрации вредных и токсичных веществ в воздухе

устанавливают в качестве гигиенических норм. Однако большой вред здоровью человека наносит длительное воздействие вредных веществ малых концентраций и нескольких токсичных компонентов.

Особенно опасны для здоровья человека оксид углерода и оксиды азота. Воздействие оксидов азота нельзя ослабить никакими нейтрализующими веществами. Не полностью сгоревшие углеводороды – это

несколько сотен химических соединений. Эта смесь является причиной многих хронических заболеваний. Наиболее опасным соединением считается бенз(а)пирен, обладающий также канцерогенными свойствами. Некоторые ароматические углеводороды являются сильными отравляющими

веществами, они воздействуют на системы кровообращения, центральную нервную и мышечную. Диоксид серы также оказывает вредное воздействие на кроветворные органы (костный мозг и селезенку) человека, его слизистую

оболочку, вызывает бессонницу. Сильными токсичными веществами являются свинец и его соединения. Они содержатся в этилированном бензине. Попадая в организм, они вызывают нарушения обмена веществ.

Загрязнение окружающей среды токсичными веществами отработавших газов приводит к существенным отрицательным последствиям. Грунтовые и поверхностные воды в большой степени подвержены опасности

загрязнения топливом, маслами, смазочными материалами и другими специальными жидкостями. Даже минимальное количество этих веществ может сильно изменить качество воды. Пленка из углеводородов на поверхности воды затрудняет процессы окисления, что отрицательно влияет

на живые организмы. Особенно опасным для лесов и лесопарков является диоксид серы, разрушающий хлорофилл. Установлено, что растения чувствительны даже к очень малым концентрациям SO2 в воздухе.

Точно определить количество выбросов вредных веществ в атмосферу двигателями практически невозможно. Величина этих выбросов зависит от многих факторов: типа двигателя, его конструктивных параметров, процесса

подготовки и сгорания смеси топлива и воздуха, режима работы,

технического состояния и др.

В настоящее время строго регламентируются предельные значения выбросов вредных веществ (ВВ) и дымности отработавших газов (ОГ).

Для их определения проводят испытания. Процедура испытаний

включает 3 различных цикла: ESC и ETC, предназначенные для определения выбросов ВВ, и ELR – для определения дымности отработавших газов (ОГ).

Цикл ESC по принципу построения близок к «старому» 13-и ступенчатому европейскому циклу. При испытаниях по циклу ESC

проверяется содержание NОХ в трех дополнительных «случайных» точках, лежащих в области режимов работы двигателя, заданной по нагрузке и частоте вращения коленчатого вала. Увеличение содержания NОХ в этих

«случайных» точках по сравнению с результатами, полученными при испытаниях в соответствующих близлежащих точках цикла, не должно превосходить 10 %. Это требование введено с целью исключения «обхода»

цикла, когда заданные экологические показатели достигаются только на регламентированных режимах цикла, а на всех остальных режимах остаются вне контроля или устанавливаются заведомо завышенными для обеспечения

наилучших мощностных, экономических и эксплуатационных показателей, что на двигателях с электронными системами управления не представляет никакого труда.

ETC – это цикл с непрерывным (посекундным) изменением нагрузки и частоты вращения двигателя. Цикл состоит из трех фаз, имитирующих движение в условиях города, пригорода и автострады.

ELR – цикл для определения дымности ОГ – представляет собой цикл

динамического нагружения. Испытания проводятся на тех же скоростных режимах, что в цикле ESC, а также на одном дополнительном «случайном» режиме, выбираемом Технической службой, проводящей испытания.

Испытания проводятся следующим образом. Первоначально двигатель paботает на заданном скоростном режиме с нагрузкой 10 %. Затем регулятор подачи топлива быстро выводится в положение, соответствующее

максимальной подаче топлива, закон нагружения при этом обеспечивает поддержание заданной постоянной частоты вращения коленвала двигателя. Дымность двигателя определяется как среднее значение дымности на

заданных скоростных режимах.

Предполагается следующий порядок применения испытательных циклов:

Для испытания «обычных» дизелей, включая двигатели с

электронным управлением топливоподачей, системой рециркуляции ОГ,

окислительными нейтрализаторами, применяются циклы ESC и ELR;

Для испытаний двигателей, оснащенных такими средствами уменьшения выбросов, как, например, восстановительные нейтрализаторы

NОХ и уловители частиц, применяются все указанные циклы - ESC, ELR, ETC;

Газовые двигатели испытываются только по циклу ETC.

Европейские требования по предельным значениям содержания ВВ в ОГ к автомобилям категорий M1 и N1 с бензиновыми, газовыми и дизельными двигателями приведены в табл.3.3.

Таблица 3.3

масса автомо- биля, кг

углерода (СО), г/км

Углеводо

азота (NOX) г/км

Углеводо

роды + ок- сиды азота г/км

тицы г/км

(1) Кроме автомобилей, максимальная масса которых превышает 2500 кг.

(2) Включая автомобили категории М, указанные в примечании 1

Для автотранспортных средств (АТС) категорий М1 полной массой более 3500 кг, М2, М3, N1, N2, N3 c дизельными и газовыми двигателями нормативные требования к вредным выбросам представлены в табл. 3.4 и 3.5.

Таблица 3.4

Предельные величины содержания ВВ и ОГ при выполнении ESC и

углерода

Углеводород

Азота (NOX) г/кВт.ч

Дымность м -1

Евро-3 2000г.

Евро-4 2005г.

Евро-5 2008г.

(1) – Для двигателей с рабочим объёмом менее 0,75дм3 на цилиндр и номинальной частотой вращения более 3000 мин-1.

(2) – «Форсированные» добровольные требования.

Таблица 3.5

Предельные величины содержания ВВ и ОГ при выполнении

ЕТС цикла

углерода (СО), г/кВт·ч

Неметановые

углеводороды (NMCH) г/кВт·ч

Метан (СН4)(1) г/кВт·ч

азота (NOX) г/кВт·ч

Частицы(2)

(1) – Только для двигателей, работающих на природном газе.

(2) – Не применяется по отношению к двигателям, работающим на газе.

(3) – Для двигателей с рабочим объёмом менее 0,75дм3 на цилиндр и номинальной частотой вращения более 3000 мин-1.

В России к выбросам вредных веществ (ВВ) АТС категорий М1 полной массой более 3500 кг, М2, М3, N1, N2, N3 c дизельными и газовыми двигателями действуют требования Евро-2. К этих же АТС с бензиновыми двигателями применяются требования, представленные в табл.3.6.

Предельные величины содержания ВВ

Таблица 3.6

В отношении АТС категорий M1 и N1 применяются требования, соответствующие уровню Евро-2 для пассажирских автомобилей (М1) и Евро-1 для грузовых (N1). Эти требования представлены в табл.3.7.

Таблица 3.7.

Предельно-допустимые величины содержания ВВ

Полная масса

автомобиля, (m), кг

углерода

Общая масса

углеводородов и оксидов

азота (СН+NOX) г/км

13051760

Полный переход (100 % выпускаемых АТС) России на уровень

Европейских требований состоялся: Евро-2 - 2004 год; Евро-3, 4 -2008 год.

Уровень загазованности может быть снижен рядом конструктивных и эксплуатационных мероприятий, направленных не только на снижение

объема выбросов, но и их токсичности. Среди мероприятий конструктивного характера можно отметить следующие:

применение устройств нейтрализации и очистки выбросов от токсичных компонентов;

применение устройств, оптимизирующих дозирование,

смесеобразование топлива, а также рабочий процесс (электронные и электромеханические системы впрыска топлива, транзисторные системы

зажигания, форкамерно-факельные дожигатели, рециркуляция выхлопа,

термостатирование воздуха и пр.);

применение нетрадиционных видов топлива (газовое топливо, водород,

синтетический бензин, спирт);

создание новых силовых установок.

Значительное уменьшение выброса СО может быть достигнуто равномерным распределением смеси путем непосредственного впрыска топлива или улучшения условий испарения топлива в карбюраторе и во впускном трубопроводе; обеспечение состава и качества образуемой смеси нагрузке и частоте вращения коленчатого вала двигателя.

Для снижения выброса углеводородов СnНm, двигатель внутреннего сгорания переводят на работу на бедных смесях, стремясь достичь большей однородности смеси и равномерности ее распределения по цилиндрам. Кроме того, стараются уменьшить долю остаточных газов в смеси при работе двигателя на частичных нагрузках правильным выбором формы и размеров камеры сгорания. Значительно сократить выбросы СО и СnНm с отработавшими газами можно использованием для питания двигателя водорода или газообразного топлива, а также послойным смесеобразованием.

Уменьшение выброса NOх у карбюраторных двигателей достигается снижением максимальной температуры цикла, обогащением смеси или сокращением продолжительности реакций, при которых происходит образование соединений азота. На практике наряду с обогащением смеси и уменьшением угла опережения зажигания понижают степень сжатия, увеличивают частоту вращения коленчатого вала двигателя, впрыскивают воду во впускной трубопровод или осуществляют частичную рециркуляцию отработавших газов.

Все применяемые в настоящее время способы уменьшения токсичности выбросов по всем основным компонентам (СО, СnНm, NOх) основаны на комбинации рассмотренных выше способов. Чаще всего это достигается следующим образом:

уменьшением выброса СО и СnНm, обеднением смеси и изменением угла опережения зажигания. Эти параметры подбирают для каждого режима работы двигателя. Устойчивая работа на обедненных смесях достигается улучшением качества смесеобразования и увеличением энергии искры на электродах свечи, для чего применяют непосредственное впрыскивание топлива и тиристорное зажигание. Для уменьшения выброса NOх используют частичную рециркуляцию отработавших газов. При использовании системы непосредственного впрыскивания топлива с электронным управлением, отрегулированной на экономичный состав смеси (в зависимости от разрежения во впускном трубопроводе, частоты вращения вала и теплового режима двигателя), удается снизить концентрацию токсичных веществ и уменьшить расход топлива на 8...10 %;

переводом двигателя на газообразное топливо с одновременной его регулировкой для работы на обедненных смесях. При этом достигается значительное уменьшение выброса продуктов неполного сгорания, т. е. СО и СnНm. Одновременно для уменьшения выброса NOx применяют, например, частичную рециркуляцию отработавших газов.

В карбюраторных двигателях во всех случаях используют специальные устройства для подачи дополнительного воздуха во впускной трубопровод на режимах разгона и торможения колесной машины. Широко применяют устройства, предотвращающие выброс в атмосферу паров углеводородов из картера двигателя и топливной системы.

Рециркуляцию газов для уменьшения выброса оксидов азота осуществляют все шире как в двигателях с искровым зажиганием, так и в дизелях. При этом понижают температуру процесса сгорания в результате уменьшения количества топлива, поступающего в цилиндры, и большей теплоемкости продуктов сгорания по сравнению с теплоемкостью воздуха. При рециркуляции 5 % отработавших газов концентрация NOх уменьшается примерно на 47 %, а при рециркуляции 15 % газов – на 84 %. Одновременно наблюдаются небольшое уменьшение выброса СnНm и некоторое увеличение выброса СО, а в дизелях – увеличение дымности. При рециркуляции газов более 10 % происходит заметное падение мощности двигателя,

увеличивается расход топлива и ухудшаются динамические характеристики автомобиля (трактора).

Такие компоненты отработавших газов, как оксид углерода и углеводороды, могут быть нейтрализованы в выпускной системе двигателя. Для этого в поток горячих отработавших газов непосредственно за

выпускным клапаном подают воздух под давлением 0,05...0,06 МПа. Количество подаваемого воздуха зависит от коэффициента избытка воздуха. По мере обеднения смеси подачу воздуха прекращают.

Чем выше температура смеси отработавших газов с воздухом, тем

эффективнее процесс окисления в выпускной системе. Увеличивают температуру уменьшением угла опережения зажигания, использованием тепловой изоляции выпускного трубопровода, снижением потерь теплоты в камере сгорания, установкой в системе выпуска специальных реакционных камер. Однако при этом несколько снижается мощность двигателя (увеличивается сопротивление на выпуске) и повышается удельный расход топлива.

Каталитические нейтрализаторы служат для сжигания продуктов неполного сгорания (СО и СnHm) и разложения оксидов азота NOх. Их действие основано на беспламенном поверхностном окислении токсичных веществ в присутствии катализатора, ускоряющего химическую реакцию. Процесс окисления происходит во время прохождения отработавших газов через слой носителя с катализатором (например, платины). Скорость сгорания зависит от температуры носителя (достигает 800 °С).

Каталитические нейтрализаторы используются для очистки отработавших газов двигателей с искровым зажиганием и дизелей. Все нейтрализаторы, монтируемые в выпускной системе, увеличивают сопротивление прохождению газов и приводят к снижению мощности двигателя на 10...20 %. Основным их недостатком является неэффективная работа в диапазоне низких температур отработавших газов. В связи с этим разработаны устройства, состоящие из плазменного и каталитического нейтрализаторов. В плазменном газы разогреваются, а в каталитическом происходит основной процесс окисления. Такие устройства эффективно работают на всех режимах независимо от нагрузки и частоты вращения вала двигателя. Их недостатком являются относительная сложность конструкции и повышенный расход топлива.

Дальнейшее усовершенствование ДВС для уменьшения выброса токсичных компонентов без увеличения расхода топлива практически невозможно. В этом отношении заслуживают внимания силовые агрегаты,

например с газотурбинными двигателями и двигателями Стирлинга.

Значительное уменьшение выброса токсичных компонентов с уменьшением расхода топлива может быть достигнуто созданием

автомобилей с гибридными силовыми установками.

Макаров Ваня

Автотранспорт является одним из основных загрязнителей атмосферы оксидам азота и угарным газом, содержащихся в выхлопных газах. Количество автотранспорта растет из года в год, что непременно приводит к загрязнению окружающего воздуха.

К основным проблемам автотранспортного загрязнения в Нижнем Новгороде относят повышение количества автотранспорта на душу населения, не соблюдение правил техобслуживания автомашин, проблема парковок, неразвитость объездных дорог, качество самих дорог.

В ходе исследования решал следующие задачи

  1. Изучить общие тенденции автотранспортного загрязнения.
  2. Ознакомиться с влиянием вредных выбросов автотранспорта на здоровье человека.
  3. Проанализировать количество выбросов вредных веществ в воздух от автотранспорта на выбранных участках.

Скачать:

Предварительный просмотр:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ НИЖЕГОРОДСКОЙ ОБЛАСТИ

Муниципальное образовательное учреждение

лицей №28 имени Б.Н. Королева

Изучение и оценка выбросов от автомобильного транспорта на участке, прилегающем к лицею № 28.

Выполнил:

ученик 9А класса

Макаров Иван.

Научный руководитель:

Учитель биологии и экологии

Плаксина Татьяна Юрьевна.

Нижний Новгород

2010

Cодержание

Введение………………………………………………………….………….3

  1. Влияние вредных выбросов автотранспорта на здоровье человека…...5
  1. Влияние газообразных веществ, образующихся при сгорании автомобильного топлива, на состояние здоровья человека.

1.1.1.Влияние диоксида азота NO 2. …………………………….…..6

. …………………………………8

……………………………..……..…8

  1. Влияние пыли, образующейся при движении автотранспорта, на состояние здоровья человека

1.2.1. Влияние резиновой пыли………...……………………………9

1.2.2. Влияние асбестовой пыли……………………………………10

2. Основные проблемы автотранспортного загрязнения в городе………11

3. Методика исследования…………………………………………………..13

4. Расчётная оценка количества выбросов вредных газообразных веществ в воздух от автотранспорта на микроучастке МОУ лицей №28………15

5. Обработка результатов и выводы…………………………………….….24

Список литературы…………………………………………………………27

Введение.

Автомобильный транспорт занимает важное место в единой транспортной системе страны. Он перевозит более 80% народнохозяйственных грузов. Высокая мобильность, способность оперативно реагировать на изменения пассажиропотоков ставят автомобильный транспорт вне конкуренции при организации местных перевозок пассажиров. На его долю приходится почти половина пассажирооборота .

Однако какова плата за эти несомненные успехи человечества? Автотранспорт является одним из основных загрязнителей атмосферы оксидам азота и угарным газом, содержащихся в выхлопных газах. Доля транспортного загрязнения воздуха составляет более 60% по СО и более 50% по NO х от общего загрязнения атмосферы этими газами. Повышенное содержание СО и NО х можно обнаружить в выхлопных газах не отрегулированного двигателя, а также в двигателях в режиме прогрева.

Выбросы вредных веществ от автотранспорта характеризуются количеством основных загрязнителей воздуха, попадающих в атмосферу из выхлопных газов, за определённый промежуток времени.

К выбрасываемым вредным веществам относятся угарный газ (концентрация в выхлопных газах 0,3 - 10%), углеводороды - несгоревшее топливо (до 3%) и оксида азота (до 0,8%), сажа .

До 85% всех заболеваний современного человека связано с неблагоприятными условиями окружающей среды. В данной связи заболевания человека, связанные с выбросами в воздух вредных веществ от автотранспорта, представляют наиболее серьёзную угрозу.

Цель исследования: оценка количества выбросов вредных веществ от автотранспорта на микроучастке МОУ лицея №28.

Задачи:

  1. Изучить общие тенденции автотранспортного загрязнения.
  2. Ознакомиться с влиянием вредных выбросов автотранспорта на здоровье человека.
  3. Проанализировать количество выбросов вредных веществ в воздух от автотранспорта на выбранных участках.

Гипотеза: применение математических методов учета выбросов автомобильного транспорта позволяет создать точную картину распределения автомобильного загрязнения на микроучастке МОУ лицея №28.

1. Влияние вредных выбросов автотранспорта на здоровье человека.

На протяжении всего ХХ века производство автомобилей стремительно возрастало. В 1998 г. По дорогам Мира ездило уже 700 млн. автомобилей. К 2010 году предположительно эта цифра достигла миллиардной отметки. Такое распространение автомобиль получил главным образом, благодаря качествам установленного на нем двигателя. При сравнительно небольшой массе он развивает мощность, достаточную для быстрой езды, потребляя при этом не так уж много топлива: одной заправки хватает на 400-500 км. Двигатель готов к работе и зимой и летом.

Все было хорошо, пока автомобилей не стало слишком много. В столицах развитых стран на каждую тысячу жителей приходиться более 300 автомобилей. Очевидно, что при таком количестве машин, выхлопные газы загрязняют окружающий воздух настолько, что это причиняет ощутимый вред здоровью людей и природе. Среди множества различных газов и химических соединений, выбрасываемых автомобилем, есть и токсичные вещества .

1.1. Влияние газообразных веществ, образующихся при сгорании автомобильного топлива, на состояние здоровья человека.

Автотранспорт является одним из крупнейших загрязнителей атмосферного воздуха. В России на его долю в середине 90-х годов приходилось 80% выбросов свинца, 59% - оксида углерода, 32% - оксидов азота. В Российской Федерации насчитывается более 150 городов с превалирующим вкладом выбросов автотранспорта в валовые выбросы (более 50%).

Даже в условиях экономического спада загрязнение природных сред в городах, как показывают наблюдения, не уменьшается. Это связано с особенностями автотранспорта как источника выбросов и сбросов загрязняющих веществ в атмосферу, отличающими их от стационарных (промышленных) источников выбросов.

Специфика подвижных источников загрязнения (автомобилей) проявляется в низком расположении пространственной распределённости и непосредственной близости к жилым районам. В результате при общей доле транспорта в массовом выбросе загрязняющих веществ в атмосферу, равной 35-60%, доля транспортных средств в загрязнении воздуха в городах достигает 70-90%. Все это приводит к тому, что автотранспорт создает в городах обширные и устойчивые зоны, в пределах которых в несколько раз превышаются санитарно-гигиенические нормативы загрязнения воздуха.

Длительный контакт со средой, отравленной выхлопными газами автомобилей, вызывает общее ослабление организма – иммунодефицит. Кроме того, газы сами по себе могут стать причиной различных заболеваний. Например, дыхательной недостаточности, гайморита, ларинготрахеита, бронхита, бронхопневмонии, рака лёгких. Кроме того, выхлопные газы вызывают атеросклероз сосудов головного мозга. Опосредованно через легочную патологию могут возникнуть и различные нарушения сердечно-сосудистой системы. при длительном нахождении на оживленной дороге или рядом с ней.

К числу приоритетных загрязнителей атмосферы, поступающих в городскую атмосферу с отработавшими газами автомобилей, относятся диоксид азота, угарный газ и летучие углеводороды. Кроме этого, перечисленные газообразные вещества наиболее опасны для здоровья людей.

Рассмотрим влияние вредных газообразных веществ, образующихся при сгорании автомобильного топлива, на состояние здоровья человека.

1.1.1. Влияние диоксида азота NO 2.

Динамика концентраций оксидов азота в городском воздухе в течение суток тесно связана с интенсивностью солнечного излучения и движения транспорта. С нарастанием интенсивности автомобильного движения (с 6 до 8 часов утра) концентрации первичного загрязнителя - оксида азота (NO) заметно увеличиваются. Восход солнца влечет за собой накопление в атмосфере диоксида азота (NO 2 ) вследствие фотохимического окисления оксида азота. Оксиды азота являются серьезными атмосферными загрязнителями в связи с их высокой токсичностью.

Средние концентрации диоксида азота заметно возрастают с севера на юг, вследствие влияния солнечной радиации на фотохимические реакции перехода оксидов азота в диоксид. В более южных городах средние концентрации NO 2 выше 40 мкг/ м 3 , поэтому для нашего региона проблема выбросов диоксида азота наиболее актуальна.

При небольших концентрациях диоксида азота NO 2 наблюдается нарушение дыхания, кашель. ВОЗ рекомендовало не превышать 400 мкг/м 3 , поскольку выше этого уровня наблюдаются болезненные симптомы у больных астмой и других групп людей с повышенной чувствительностью. При средней за год концентрации, равной 30 мкг/м 3 увеличивается число детей с учащенным дыханием, кашлем и больных бронхитом.

При контакте оксидов азота с влажной поверхностью легких образуются HNO 3 (азотная кислота) и HNO 2 (азотистая кислота), поражающие ткань легких, что приводит к отеку легких и сложным рефлекторным расстройствам. При отравлении оксидами азота в крови образуются нитраты и нитриты. Последние, действуя непосредственно на артерии, вызывают расширение сосудов и снижение кровяного давления. Попадая в кровь, нитриты препятствуют поступлению кислорода в организм, что приводит к кислородной недостаточности.

Таким образом, диоксид азота воздействует в основном на дыхательные пути и легкие, а также вызывает изменения состава крови, в частности, уменьшает содержание в крови гемоглобина.

В специальной литературе также указывается на то, что воздействие на организм человека диоксида азота снижает сопротивляемость к заболеваниям, вызывает кислородное голодание тканей, особенно у детей. Также систематическое вдыхание диоксида азота усиливает действие канцерогенных веществ, способствуя возникновению злокачественных новообразований.

1.1.2. Влияние угарного газа (СО) .

Угарный газ попадает в атмосферный воздух при любых видах горения. В городах его источником являются в основном выхлопные газы от автотранспорта. На крупных автострадах средняя концентрация СО превышает порог отравления, симптомами которого являются головная боль и удушье, стук в висках, головокружение, боли в груди, сухой кашель, слезотечение, тошнота, рвота.

Причинами такого влияния на организм является способность угарного газа связываться с гемоглобином крови, образуя карбоксигемоглобин и блокируя передачу кислорода тканевым клеткам. Это приводит к гипоксии гемического типа. Угарный газ также включается в окислительные реакции, нарушая биохимическое равновесие в тканях.

1.1.3. Влияние углеводородов .

Токсичность различных углеводородов сильно отличается. Наиболее опасны непредельные углеводороды, которые в присутствии диоксида азота фотохимически окисляются, образуя ядовитые кислородсодержащие соединения - составляющие смогов. Смог является причиной головной боли, заболеваний глаз и дыхательной системы. Обнаруженные в газах полициклические ароматические углеводороды - также сильные канцерогены. Особенно опасно систематическое отравление, приводящее к накоплению углеводородов, что обуславливает проявление мутагенеза, тератогенеза (врождённые дефекты у детей), развитие опухолей, бесплодие, заболевания почек, печени желудка. Отмечены случаи нарушения неврологического, физиологического и биохимического функционирования.

Проведённый анализ влияния выхлопных газов на здоровье человека позволяет сделать вывод, что данный источник загрязнений может считаться одним из наиболее опасных. Его действию подвержено подавляющее большинство населения не только индустриальных центров, но и небольших населённых пунктов.

1.2. Влияние пыли, образующейся при движении автотранспорта, на состояние здоровья человека.

Запылённость воздуха – важнейший экологический фактор, сопровождающий нас повсюду. Пылью считаются любые твёрдые частицы, взвешенные в воздухе. Безвредной пыли не существует. Экологическая опасность пыли для человека определяется их природой и концентрацией в воздухе.

При движении автотранспорта наибольшую опасность для здоровья человека представляют резиновая и асбестовая пыль.

1.2.1. Влияние резиновой пыли.

Независимые исследования американских и шведских специалистов, проведенные в 1990 году, показали, что автомобильные покрышки вреднее для здоровья человека, чем автомобильные выхлопные газы. Дело в том, что пыль, возникающая вследствие износа резины, вдыхается вместе с воздухом и может вызывать серьёзные заболевания. В первую очередь, это сказывается на состоянии людей, склонных к аллергии и бронхиальной астме. Только в Швеции в атмосферу выбрасывается около 10 тысяч тонн резиновой пыли ежегодно. В Лос-Анджелесе эта цифра достигает 5 тысяч тонн, притом, что Лос-Анджелес считается экологически чистым городом. Во всём мире количество этих выбросов составляет более миллиона тонн. Подсчитано, что каждый день житель Швеции вдыхает 6 г резиновой пыли, американец – 13 г, а россиянин – до 20 г.

Реакции организма на загрязнения воздуха резиновой пылью зависят от индивидуальных особенностей человека: возраста, пола, состояния здоровья. Как правило, более уязвимы дети, пожилые и престарелые, люди с заболеваниями органов дыхания, аллергики.

При систематическом или периодическом поступлении в организм человека сравнительно небольших количеств компонентов резиновой пыли происходит хроническое отравление. Признаками такого отравления являются нарушения поведения, привычек, нейропсихические отклонения: быстрое утомление, чувство постоянной усталости, сонливость или, наоборот, бессонница, апатия, ослабление внимания, забывчивость, сильные колебания настроения. Также при хроническом отравлении у разных людей могут возникнуть различные поражения почек, кроветворных органов, нервной системы, печени. Содержащиеся в резиновой пыли высокоактивные в биологическом отношении вещества могут вызвать эффект отдалённого влияния на здоровье человека: хронические воспалительные заболевания различных органов, изменение нервной системы, воздействие на внутриутробное развитие плода, приводящее к различным отклонениям у новорожденных.

По данным исследований, подобные признаки наблюдаются и при радиоактивном загрязнении окружающей среды. Таким образом, загрязнение атмосферы резиновой пылью может вызвать «эффект Чернобыля» при сохранении нормального радиационного фона.

1.2.2. Влияние асбестовой пыли.

При работе автомобильного транспорта асбестовая пыль образуется, в основном, при стирании тормозных колодок.

Асбест – это собирательный термин, обозначающий группу природных волокнистых материалов. Волокнистое строение асбеста делает возможным его расщепление на гибкие волокна микроскопической длины. При износе тормозных колодок автотранспорта хризотиловый асбест выделяется в воздух в виде мельчайших, невидимых глазу волокон. Те из них, которые имеют длину 0,005 – 0,1 мм и толщину до 0,003 мм, могут проникать в лёгкие человека. Волокна асбеста при этом внедряются в лёгочную ткань, вызывая хронические воспаления. После длительного периода (15-40 лет) это заболевание может привести к раку лёгких. По данным американских исследователей, в настоящее время 20% всех раковых заболеваний лёгких возникают по причине хронических отравлений асбестом .

2. Причины увеличения автотранспортных выбросов в Нижнем Новгороде.

Транспорт продолжает оставаться одним из основных источников загрязнения атмосферного воздуха и вредных физических воздействий на окружающую природную среду города.

На 01.01.96 г. общее количество транспортных средств (ТС), стоящих на учете в Н. Новгороде, составило 157343 единицы.

Как показывает практика, следствием разгосударствления и приватизации транспорта является ухудшение качества обслуживания автомобилей: не соблюдается периодичность и порядок техобслуживания, не проводится инструментальный контроль уровня токсичности и дымности отработавших газов. В результате не снижается количество транспортных средств, эксплуатирующихся с нарушением основных положений ПДД РФ по допуску транспортных средств к эксплуатации, с превышением норм токсичности и дымности, оказывающих повышенное шумовое воздействие на окружающую природную среду и т.д. По результатам инструментального обследования автопредприятий и транспортных цехов промпредпрятий инспекторским составом городского комитета выявлено и снято с эксплуатации свыше 1500 единиц экологически "грязного" транспорта. К этому числу надо добавить автотранспорт, проверенный в Нижнем Новгороде Нижегородоблкомприродой, Российской транспортной инспекцией, Госстандартом, ГАИ. Но окончательно побороть это зло пока не удается, ведь инспекционной проверке подвергается лишь десятая часть стоящего на учете в городе транспорта. А есть еще и иногородний, транзитный транспорт.

В последние годы становятся обыденными факты хранения, мойки, ремонта автомобилей в не отведенных для этого местах (рядом с жилыми домам, на газонах, у водоразборных колонок, в зонах отдыха), что подтверждается многочисленными жалобами и обращениями граждан. Все это также обостряет экологическую и санитарную обстановку. По-прежнему значительный вклад в загрязнение окружающей среды города вносит грузовой транспорт, в том числе иногородний и транзитный, движущийся по основным магистралям из-за отсутствия дорог-дублеров, неразвитости объездных дорог вне города. Вследствие недостаточности средств в городском бюджете сеть автодорог в городе практически не развивается.

В последние годы администрация города проводит значительные работы по реконструкции и ремонту дорожного полотна. Это ведет к снижению загрязнения и к экономии ресурсов. Однако в весенний период происходит частичное разрушение проезжей части дорог, в результате чего водители вынуждены снижать скорость, переходить на низшие передачи, а это приводит к усиленному износу транспортных средств и повышенному загрязнению атмосферного воздуха отработавшими газами.

Нижний Новгород имеет большую протяженность своей территории, поэтому актуальным является вопрос перевозки пассажиров общественным транспортом. Основную часть перевозок производит городской автобусный транспорт (свыше 55%). Проблему уменьшения загрязнения атмосферного воздуха от автотранспорта можно частично решить путем развития альтернативных видов транспорта и, в частности, электротранспорта, являющегося экологически наиболее чистым, расширения сети трамвайных и троллейбусных линий, увеличения протяженности линий метрополитена .

3. Методика исследования.

Количество выбросов вредных веществ, поступающих от автотранспорта в атмосферу, может быть оценено расчётным методом. Исходными данными для расчета количества выбросов являются:

Количество единиц автотранспорта разных типов, проезжающих по выделенному участку автотрассы в единицу времени;

Нормы расхода топлива автотранспортом (средние нормы расхода топлива автотранспортом при движении в условиях города приведены в табл.1);

таблица №1.

Значения эмпирических коэффициентов, определяющих выброс вредных веществ от автотранспорта в зависимости от вида горючего (приведены в табл.2)

таблица №2.

Коэффициент К численно равен количеству вредных выбросов соответствующего компонента в литрах при сгорании в двигателе автомашины количества топлива (также в литрах), необходимого для проезда 1 км (т.е. равного удельному расходу) .

Оборудование: блокнот, карандаш, калькулятор.

Выполнение работы:

  1. Для проведения работы были выбраны участки улиц с разной интенсивностью движения в окрестностях лицея (рис.1):

№1 – автодорога по ул. Тимирязева,

№2 – автодорога по ул. Кулибина,

№3 – автодорога ул. Студенческая,

№ 4 – автодорога проспект Гагарина.

Рис.1. Схема микроучастка МОУ лицей №28.

  1. Длина участков улиц (l х , км) измерялась парами шагов (l, м).

L = 0,55 м;

l 1 = 244 * 0,55 = 134 м = 0,134 км.

l 2 = 605 * 0,55 = 333 м = 0,333 км.

l 3 = 218 * 0,55 = 120 м = 0,12 км.

l 4 = 600 * 0,55 = 330 м = 0,33 км.

  1. Определяем количество единиц автотранспорта.

А) Подсчитываем количество единиц автотранспорта данный момент времени в течение 20 минут.

Таблица 3

Участок №1

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

105,7

Грузовые автомобили

12,8

Автобусы

Участок №2

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

19,9

Грузовые автомобили

Автобусы

Дизельные грузовые автомобили

Участок №3

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

Грузовые автомобили

Автобусы

Дизельные грузовые автомобили

Участок №4

Тип автотранспорта

Количество, шт

всего за 20 минут

За 1 час, N, шт

Общий путь за час, L, км

Легковые автомобили

2691

Грузовые автомобили

125,7

Автобусы

62,3

Дизельные грузовые автомобили

23,7

*Количество единиц автотранспорта за 1 час (количество, полученное за 20 минут, умноженное на 3).

Б) Проследим динамику количества автомобильного транспорта на выбранных участках в течение недели за единицу времени (1ч).

В течение недели замерялось количество автотранспорта, проезжающих на 4-х исследуемых участках в определенный промежуток времени с 14.00 – 15.00 ч. (рис. 2.1-2.4).

Участок №1. В среднем за неделю на участке №1 проезжает:

644 легковые машины - 86 %;

13 автобусов – 1 %;

70 грузовых автомобилей – 10%;

23 дизельных грузовых автомобилей – 3 %

Рис. 2. 1. Количество автомобильного транспорта на участке дороги №1.

Участок №2. В среднем за неделю на участке №2 проезжает:

65 легковых автомобилей – 86 %; почти не проезжает автобусов – 0%;

8 грузовых автомобилей – 10 %; 3 дизельных грузовых автомобиля – 4 %.

Рис. 2. 2. Количество автомобильного транспорта на участке дороги №2.

Участок №3. В среднем за неделю на участке № 3 проезжает:

41 легковой автомобиль – 91 %; 1 автобус – 2 %;

3 грузовых автомобиля – 7 %; дизельных грузовых автомобилей – 0%

Рис. 2. 3. Количество автомобильного транспорта на участке дороги №3.

Участок №4. В среднем за неделю на участке №4 проезжает:

2552 легковых автомобиля – 80 %; 182 автобуса – 6,5 %;

357 грузовых автомобилей – 11 %; 70 дизельных груз. автомобилей – 2,5%.

Рис. 2. 4. Количество автомобильного транспорта на участке дороги №4.

На выбранных участках наибольшее количество транспорта относится к легковым автомобилям 80-90%, 7-11 % приходится на долю – грузовых автомобилей и лишь незначительная часть принадлежит автобусам и дизельным грузовым автомобилям (рис.3).

Рис. 3. Соотношение автотранспорта на исследуемых участках.

  1. Рассчитаем общий путь, пройденный выявленным количеством автомобилей каждого типа за 1 час (L, км) по формуле:

L i = N i *l,

где N – количество автомобилей каждого типа за 1 час;

i – обозначение каждого типа автотранспорта,

l – длина участка в км

Полученный результат внесен в таблицу 4.

5. Рассчитаем количество топлива (Q 1 , л) разного вида, сжигаемого двигателями автомашин по формуле:

Q i = L i * Y i

L i - путь, пройденный выявленным количеством автомобилей каждого типа за 1 час;

Y 1 - удельный расход топлива из табл. 1.

Было определено общее количество сожженного топлива каждого вида (∑Q). Полученные данные занесены в табл. 4.

таблица 4

Участок №1

Тип автотранспорта

Всего за час, N ср

(шт.)

Общий путь за 1 час, L ср (км)

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

10,3

Грузовой автомобиль

Автобусы

Дизельные грузовые автомобили

Всего ∑Q

13,1

Участок №2

Тип автотранспорта

Всего за час, N ср

(шт.)

Общий путь за 1 час, L ср (км)

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

Грузовой автомобиль

Автобусы

Дизельные грузовые автомобили

Всего ∑Q

Участок №3

Тип автотранспорта

Всего за час, N ср

(шт.)

Общий путь за 1 час, L ср (км)

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

Грузовой автомобиль

Автобусы

0,04

Q i , в том числе

бензин

дизельное топливо

Легковые автомобили

2552

101,4

Грузовой автомобиль

37,4

Автобусы

25,2

Дизельные грузовые автомобили

Всего ∑Q

138,8

32,8

  1. Рассчитали количество выделившихся вредных веществ в литрах при нормальных условиях по каждому виду топлива и всего по табл. 5.

    155,7

    93,42

    15,57

    6,22

    Дизельное топливо

    34,94

    3,49

    1,04

    1,39

    Всего (V), л

    96,91

    16,61

    7,61

    1. Обработка результатов и выводы.

    Рассчитываем

    массу выделившихся вредных веществ (m, г) по формуле:

    m= V*M/22,4;

    количество чистого воздуха, необходимое для разбавления выделившихся вредных веществ для обеспечения санитарно-необходимых условий окружающей среды (м 3 ) по формуле:

    V возд = m в /ПДК в

    Полученные результаты заносим в таблицу 6.

    таблица 6

    Вид вредного вещества

    Количество, л

    Масса, г

    Количество воздуха для разбавления, м 3

    Значение ПДК, мг/м 3

    Угарный газ (CO)

    96,91

    120,76

    40233

    Углеводороды

    16,61

    53,38

    2135,5

    Диоксид азота (NO 2 )

    7,61

    15,62

    390500

    0,04

    Выводы:

    Автотранспорт является одним из основных загрязнителей атмосферы оксидам азота и угарным газом, содержащихся в выхлопных газах. Количество автотранспорта растет из года в год, что непременно приводит к загрязнению окружающего воздуха.

    К основным проблемам автотранспортного загрязнения в Нижнем Новгороде относят повышение количества автотранспорта на душу населения, не соблюдение правил техобслуживания автомашин, проблема парковок, неразвитость объездных дорог, качество самих дорог.

    Полученные в результате исследования результаты позволяют сделать следующие выводы:

    1. автотранспортом наиболее загружены дороги, прилегающие к лицею на участках №1, №4,
    2. количество легковых автомобилей на дорогах в окрестностях МОУ лицей №28 существенно превышает количество автобусов и грузовых машин;
    3. при движении автотранспорта по выбранным участкам дороги большую часть газообразных выбросов (по массе) составляет угарный газ (CO); это свидетельствует о том, что жителям данной улицы угрожает хроническое отравление этим веществом;
    4. масса выбросов углеводородов и диоксида азота значительно меньше, но также может влиять на состояние здоровья человека.
    5. Количество вредных веществ, выбрасываемых в атмосферу жилого района работающими автомобильными двигателями, велико, а воздуха для их разбавления до безопасной концентрации явно не достаточно.

    Выдвинутая гипотеза подтвердилась: математические методы учета позволяют определить массу вредных выбросов автомобильного транспорта, попадающих в атмосферу.

    Список литературы

    1. И.Р. Голубев, Ю.В. Новиков. Окружающая среда и транспорт. Москва «Транспорт», 1987
    2. Природопользование. Учебник под ред. проф. Э.А. Арустамова. 2-ое изд., перераб. и доп.-М.:Издат.дом «Дашков и К», 2000.-284с.
    3. Пивоваров, Ю.П., Королик, В.В., Зиневич, Л.С. Гигиена и основы экологии человека. Серия «Учебник и учебные пособия» Ростов н/Д.: «Феникс», 2002. -512с.
    4. Алексеев С.В, Груздева Н.В, Муравьёв А.Г, Гущина Э.В. Практикум по экологии: Учебное пособие / по ред. С.В. Алексеева. – М. : АО МДС, 1996 – 192 с.
    5. Энциклопедия для детей. Т 19. Экология/ глав. ред. В. Володин; вед. Науч. Ред. Г. Вильчек. – М.: Аванта, 2004 – 448 с.
    6. http://www.ecologystudy.ru

Автотранспорт является мощным источником загрязнения природной среды. Из 35 млн.т вредных выбросов 89% приходится на выбросы предприятий автомобильного транспорта и дорожно-строительного комплекса, 8% - на железнодорожный транспорт, около 2% - на авиатранспорт и около 1% - на водный транспорт.

Расчет проводится для следующих загрязняющих веществ: оксида углерода (СО), углеводородов (СН), оксидов азота (в пересчете на NO 2) и соединений свинца. Для дизельных двигателей дополнительно рассчитываются выбросы сажи (С).

Выброс загрязняющих веществ определяется в момент “выезда-въезда” транспорта с территории гаража (автостоянки, автотранспортного предприятия и т.д.) за территорию предприятия.

Выброс i-го вещества одним автомобилем k-той группы в день при выезде с территории предприятия M’ik и возврате M’’ik рассчитывали по формуле:

M’ik = m прik *t пр +m Lik *L 1 + m xxik *t xx1 ;

M’’ik= m Lik *L 2 +m xxik *t xx2 ,

где m прik - удельный выброс i-го вещества при прогреве двигателя автомобиля k-й группы, г/мин;

m Lik - пробеговый выброс i-го вещества при движении автомобиля по территории с относительно постоянной скоростью, г/км;

m xxik - удельный выброс i-го компонента при работе двигателя на холостом ходу, г/мин;

t пр - время прогрева двигателя, мин;

L 1 , L 2 - пробег по территории предприятия автомобилей в день при въезде (выезде), км;

t xx1 , t xx2 - время работы двигателя на холостом ходу при выезде (возврате) на территорию, мин.

Скорость движения автомобилей по территории предприятия составляет 10-20 км/ч, нагрузка практически отсутствует. Значения m прik , m Lik , m xxik для различных групп автомобилей представлены в табл. 3.1 - 3.5. Эти значения отражают не только типы автомобилей, их грузоподъемность, но и период года.

Периоды года (холодный, переходный, теплый) условно определяются по величине среднемесячной температуры. Месяцы, в которых среднемесячная температура ниже -5 С, относятся к холодному периоду, выше +5 С - к теплому, с температурой от -5 С до +5 С - к переходному. Влияние периода года учитывается только для выезжающих автомобилей.

Пробег автомобиля по территории предприятия при въезде и выезде в данном случае L 1 =L 2 , км.

Время прогрева (t пр) - 4 мин (для закрытой стоянки), а на открытой стоянке - 12 мин в холодный период, 6 мин. в переходный и 4 мин. - в теплый.

Валовой (суммарный) выброс каждого (i-го) вещества расчитывается отдельно для каждого периода года по формуле:

Mi j =  В (M’ ik +M’’ ik)*N k *D j p *10 -3 , кг,

где  В - коэффициент выпуска в смену;

N k - количество автомобилей k-й группы на предприятии;

D j p - количество рабочих дней в расчетном периоде года;

j - период года (теплый (т), холодный (х), переходный (п)).

Количество рабочих дней в расчетном периоде зависит от режима работы предприятия и длительности периодов со средней температурой ниже -5 С, от -5 С до +5 С, выше +5 С.

Для определения годового суммарного выброса массы одноименных веществ по периодам суммируются:

М i = M т i + M х i + M п i , кг.

Максимальный разовый выброс i-го вещества (Gi) расчитывается по формуле:

Gi=((m прik *t пр +m Lik *L+m xx ik *t xx)a В N k) / 60t p , г/сек,

где t p - время разъезда автомобилей, принятое равным 120 мин.

Максимальный разовый выброс расчитывали для месяца с наиболее низкой среднемесячной температурой.

Приведем пример расчета выбросов загрязняющих веществ для грузовых автомобилей грузоподъемностью 3-6 т.

Количество автомашин - 4.(№ 4 не брать)